Sampling and Sampling plan
Sampling and Sampling plan

Why do we have to set the sampling plan and collect samples?

- Control of microbiological hazard in foods
 - Education and training
 - Inspection of facilities and operations
 - minimize hazard

- Sampling for microbiological analysis
 - sampling plan → quality of batch → release safe food
Sampling plan

Sampling plan: a statement of criteria of acceptance applied to a lot (batch) based on appropriate examinations of a required number of sample units by specific methods

- Number of units
- Sampling procedure
- Decision criteria (Microbiological criteria)
- two or three class plan
Microbiological criteria

- **Mandatory criterion**
 - Microbiological std.
 - Limit for pathogens of public health significance
 - Limit for non-pathogens
 - ICMSF (International Commission on Microbiological Specifications for Foods)
 - Std. is part of a law and regulation
 - Enforceable by regulatory agencies

- **Advisory criterion**
 - Microbiological end product specification
 - Increase assurance of product hygiene
 - Microbiological guideline
 - During or after processing to monitor hygiene
Microbiological criteria

- Codex

- Consists of 5 components:
 - The organisms of concerns and/or toxins
 - The analytical methods for detection and quantitation
 - A sampling plan
 - When and where samples are to be taken
 - Microbiological limits
 - The number of sampling units
Valid samples

- Representative
 - representative of the batch/lot of products
 - batch?
 - lot?
 - Representative samples depend on?
- Aseptically collected
- Sterile equipment
- Stored properly
Equipment and reagents

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Reagents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument for opening</td>
<td>Microbicide</td>
</tr>
<tr>
<td>Transfer instrument</td>
<td>Agent for dilution</td>
</tr>
<tr>
<td>Sample container</td>
<td></td>
</tr>
<tr>
<td>Thermometer</td>
<td></td>
</tr>
<tr>
<td>Label supplies</td>
<td></td>
</tr>
<tr>
<td>Shipping container</td>
<td></td>
</tr>
<tr>
<td>Balance</td>
<td></td>
</tr>
<tr>
<td>Blender and mixers</td>
<td></td>
</tr>
</tbody>
</table>
How large a sample is required?

- Physical limitation
 - How many samples can be tested per day

- Population
 - types of samples
 - Heterogeneous
 - Homogeneous

- Estimation \(\rightarrow \) lot size

\[\sqrt{\text{Number of unit} + 1} \]
Microbiological limit

- Defect acceptability limit
 - Based on microbiological testing
 - Consumer risk:
 - The risk that the consumer takes
 - Lot does not conform the requirement accepted
 - Normally 10%
 - Producer risk:
 - The risk that the producer takes
 - Lot conform the requirement rejected
 - Normally 5%
Steps for choosing sampling plan

- Select the measurement
- Define the sampling unit
- Determine: consumer or producer risk to ensure the lot quality
- Obtain an estimate process
- Select a plan that meet the risk and lot quality
- Calculate operating characteristic curve (probability of acceptance)
- Apply the plan on the lot
- Maintain record on process or make change the plan if necessary
Sampling plan

- **Variable sampling plan**
 - The probability distribution is required (normal distribution)
 - Fewer samples are required

- **Attribute sampling plan**
 - Two class plan
 - Three class plan
 - Do not know the distribution
 - Larger samples are required
Two class plan

- Simple plan used to designate acceptable or unacceptable batch/lot of food
- Specification: n, c, m
 - $n =$ the number of sampling units from the lot
 - $c =$ the maximum allowance number of sample units that exceed the microbiological criterion
 - $m =$ the maximum number or level of relevant bacteria (CFU/gm or ml) (std. acceptable criteria)
Two class plan

- Sampling plan in beef

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>c</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonella</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Coliform</td>
<td>5</td>
<td>2</td>
<td>10^2</td>
</tr>
</tbody>
</table>

- More stringent plan
 - increasing number of unit (n)
 - reducing the maximum allowance number (c)
Two class plan

- **Salmonella** \(n=20 \) \(c=0 \) \(m=0 \)

- All samples must be negative
- If one sample is positive, entire lot should be rejected
- To make more effective sampling plan
 - increasing number of unit \((n)\)
Three class plan

- Used to designate acceptable/marginally acceptable/unacceptable food

- Specification: n, c, m, M
 - $n =$ the number of sampling units from the lot
 - $c =$ the maximum allowance number of sample units that exceed the microbiological criterion
 - $m =$ the maximum number or level of relevant bacteria (CFU/gm or ml) (Threshold value)
 - $M =$ the maximum number that use to separate marginally acceptable/unacceptable quality food (Maximum permitted microbial level)
Three class plan

Sampling plan in raw chicken

<table>
<thead>
<tr>
<th></th>
<th>n=5</th>
<th>c=5</th>
<th>m=5x10^5</th>
<th>M=10^7</th>
</tr>
</thead>
<tbody>
<tr>
<td>APC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. coli</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Acceptable: C samples have M/O level between \(m \) and \(M \), other samples have level of M/O less than \(m \)
- Satisfactory: All samples have M/O level less than \(M \)
- Unacceptable: If one or more samples have level of M/O more than \(M \)
Three class plan

Aerobic plate count (APC)

\[n=5 \quad c=5 \quad m=5 \times 10^5 \quad M=10^7 \]

- None of the unit \(n \) more than \(M \)
- If any sample more than, entire lot is rejected
 - unacceptable
- \(c \) units can more than \(m \)
 - acceptable
 - marginally acceptable (Satisfactory)
- To make more effective sampling plan
 - increase \(n \)
 - reduce \(m \)
Sampling plans and microbiological limit in foods

<table>
<thead>
<tr>
<th>Products</th>
<th>Tests</th>
<th>Case</th>
<th>Class plan</th>
<th>n</th>
<th>c</th>
<th>m</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precooked breaded fish</td>
<td>APC</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>5×10^5</td>
<td>10^7</td>
</tr>
<tr>
<td></td>
<td>E. coli</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>11</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>S. aureus</td>
<td>8</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>10^3</td>
<td>10^3</td>
</tr>
<tr>
<td>Raw chicken (fresh or frozen), during processing</td>
<td>APC</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>5×10^5</td>
<td>10^7</td>
</tr>
<tr>
<td>Frozen vegetables and fruit, pH 4.5</td>
<td>E. coli</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>10^2</td>
<td>10^3</td>
</tr>
<tr>
<td>Comminuted raw meat (frozen) and chilled carcass meat</td>
<td>APC</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>10^9</td>
<td>10^7</td>
</tr>
<tr>
<td>Cereals</td>
<td>Molds</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>10^2-10^4</td>
<td>10^5</td>
</tr>
<tr>
<td>Frozen entrées containing rice or corn flour as a main ingredient</td>
<td>S. aureus</td>
<td>8</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>10^3</td>
<td>10^4</td>
</tr>
<tr>
<td>Noncarbonated natural mineral and bottled noncarbonated waters</td>
<td>Coliforms</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>Roast beef</td>
<td>Salmonella</td>
<td>12</td>
<td>2</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>S. aureus</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>10^3</td>
<td>10^4</td>
</tr>
<tr>
<td></td>
<td>V. parahaemolyticus</td>
<td>8</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>10^2</td>
<td>10^3</td>
</tr>
<tr>
<td></td>
<td>Salmonella</td>
<td>10</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>APC</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>5×10^5</td>
<td>10^7</td>
</tr>
<tr>
<td></td>
<td>E. coli</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>11</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>S. aureus</td>
<td>8</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>10^3</td>
<td>–</td>
</tr>
</tbody>
</table>
Sampling plans and microbiological limit in foods

<table>
<thead>
<tr>
<th>Poultry product</th>
<th>n</th>
<th>c</th>
<th>m</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>APC</td>
<td>5</td>
<td>3</td>
<td>10^4</td>
<td>10^5</td>
</tr>
<tr>
<td>S. aureus</td>
<td>5</td>
<td>1</td>
<td>10^2</td>
<td>10^4</td>
</tr>
<tr>
<td>E. coli</td>
<td>5</td>
<td>2</td>
<td>10</td>
<td>10^2</td>
</tr>
<tr>
<td>Salmonella</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dried milk</th>
<th>n</th>
<th>c</th>
<th>m</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesophilic count</td>
<td>5</td>
<td>2</td>
<td>5x10^4</td>
<td>2x10^5</td>
</tr>
<tr>
<td>Coliform</td>
<td>5</td>
<td>1</td>
<td>10</td>
<td>10^2</td>
</tr>
<tr>
<td>Salmonella</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Degree of health hazard and conditions of use

<table>
<thead>
<tr>
<th>Type of Hazard</th>
<th>Conditions in Which Food Is Expected to Be Handled and Consumed after Sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reduce Degree of Hazard</td>
</tr>
<tr>
<td>No direct health hazard</td>
<td></td>
</tr>
<tr>
<td>Utility (e.g., general contamination, reduced shelf-life, and spoilage)</td>
<td>Case 1</td>
</tr>
<tr>
<td>Health hazard</td>
<td></td>
</tr>
<tr>
<td>Low, indirect (indicator)</td>
<td>Case 4</td>
</tr>
<tr>
<td>Moderate, direct, limited spread</td>
<td>Case 7</td>
</tr>
<tr>
<td>Moderate, direct, potentially extensive spread</td>
<td>Case 10</td>
</tr>
<tr>
<td>Severe, direct</td>
<td>Case 13</td>
</tr>
</tbody>
</table>

Source: ICMSF (16); copyright © 1986 by University of Toronto Press, used with permission.