Abstract

KARYOTYPE OF CROSSBRED PROGENY BORN TO THE INTERSPECIES HYBRIDIZATION OF WILD AND ZEBU CATTLE WITH REFERENCE TO THEIR FERTILITY AND GROWTH PERFORMANCE

Karyotypes of the crossbred progeny of wild and zebu cattle, born from the insemination of zebu dams with deep frozen semen from gaur (Bos gaurus) and banteng (Bos javanicus) sires were studied. The crossbred progeny (F1) born from the gaur sire and zebu dams revealed a diploid chromosome number of 2n=58. Fifty-four acrocentric and 2 submetacentric autosomes were found, sex chromosomes being submetacentric and metacentric in the male and submetacentric in the female. Two types of chromosomes with a complement of 2n=59 and 2n=58, were found in the crossbred progeny (F1) of the banteng sire and zebu dams. Robertsonian translocation of 1, 29 was found in crossbred progeny with 2n=59 whereas 1/29 and 2/27 Robertsonian translocation was found in those with 2n=58. Sex chromosomes in both groups were the same as those of the crossbred progeny (F1) of the gaur sire and zebu dams. Female crossbred progeny (F1) born to both gaur and banteng sires can conceive after natural breeding, males however could not produce sperm. The growth performance of these crossbred progeny was satisfactory in terms of weight and growth rate at all ages. Male hybrids, although sterile, are of economic benefit for meat production and female hybrids can be used for breeding and can produce crossbred progeny with maximal heterosis of interspecies hybridization for production and reproductive fitness.

Keywords : karyotype, wild and zebu cattle hybrids, fertility, growth performance

Bureau of Biotechnology for Animal Production, Department of Livestock Development, Patumthani.
Khao Kheow Open Zoo, Chonburi.
Faculty of Medicine, Chulalongkorn University, Bangkok 10330.
Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok 10330.
Corresponding author
บทความย่อ

นุษตรา วัฒนกุล 1, วัฒนกุล 2, พรภัสสี เลสลี่ 3, มนพสุนทร ตันสมิต 4, วัฒนกุล 5

รูปแบบโภชนาการของกลุ่มผสมที่เกิดจากการผสมข้ามสายพันธุ์ระหว่างโคป่าและโคซีบูบ ความสมบูรณ์พันธุ์และการเจริญเติบโต

ศิลปะบริโภคป่าของกลุ่มผสมที่เกิดจากการผสมข้ามสายพันธุ์ระหว่างโคป่าและโคซีบูบ พบว่า โคซีบูบ (F1) ทุกตัว ที่เกิดจากพ่อตัวปะการังและแม่ซีบูบ มีจำนวนโครโมโซมเป็น 2n=58 โดยมีโครโมโซมบางมุมเป็นแบบ อะโครแซทรีค จำนวน 54 ตัว และเป็นแบบ ข้ามเศษ เซครีต จำนวน 2 ตัว ในขณะที่โคซีบูบจะเป็นแบบ ข้ามเศษเซครีต ตัวใหญ่ 1 ตัว และ แม่เซครีต ตัวเล็ก 1 ตัว ล่าสุดที่พบ พบที่โคซีบูบ พบที่โคซีบูบ ที่เกิดจากพ่อตัวชนิดโคซีบูบ เซครีตของโคป่าและซีบูบ จะมีจำนวนโครโมโซมแต่งต่างเป็น 2 เล่ม คือ 2n=59 และ 2n=58 โดยพบ 1/29 Robertsonian translocation ในทั้งที่มี 2n=59 และ 1/29 และ 2/27 Robertsonian translocation ในทั้งที่มี 2n=58 โดยสังเกตุ โครโมโซมผสมเป็นแบบคู่ธัญ กลุ่มผสม (F1) ที่เกิดจากพ่อตัวกระทิง เกิดในพันธุ์ความสมบูรณ์พันธุ์ พบว่ากลุ่มผสมที่เกิดจากพ่อตัวกระทิง (F1) ที่เกิดจากพ่อตัวกระทิง และพ่อตัวกระทิงให้ได้จากความสมบูรณ์ภูมิ 3 ในขณะที่กลุ่มผสมพันธุ์ (F1) ทั้งหมด ไม่สามารถค้นพบได้จากกลุ่มผสมที่เกิดจากโครโมโซมผสม (F1) ที่เกิดจากพ่อตัวกระทิง และพ่อตัวกระทิง มีการนั่งภายในระยะต่างๆ และการเจริญเติบโตที่ดีกว่า ดังนั้นกลุ่มผสมพันธุ์ (F1) นี้จะเป็นสิ่งผลิตขึ้นที่พ่อตัวกระทิง เค้าจะได้ประโยชน์ของมาตรฐานคือ สามารถเกิดเป็นพันธุ์ที่ถูกต้องและถูกต้องการบริโภคได้ ในขณะที่กลุ่มผสมพันธุ์ที่มีการนั่งภายในระยะต่างๆ และปรับปรุงพันธุ์ ต่ำไปได้ เท่าที่ได้กลุ่มผสมที่มีผลผลิต และสามารถปรับปรุงพันธุ์ที่ต่ำสุดในกระบวนการเลี้ยงสูงในประเทศไทย

คำสำคัญ: โคป่า โคซีบูบ ผู้ผสมโคป่า และโคซีบูบ ความสมบูรณ์พันธุ์ การเจริญเติบโต

บทนำ

การศึกษานี้เป็นการศึกษาต่อเนื่องจาก โครงการอนุรักษ์พันธุ์โคป่า ซึ่งถูกกำหนดขึ้นในปี พ.ศ. 2533 โดยความร่วมมือของกรมปศุสัตว์ องค์การสวนสัตว์และสวนพฤกษศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย และสถาบันนิวเคลียร์การประดิษฐ์ของไทย โดยโครงการดังกล่าว ได้ทำให้สามารถค้นพบชนิดของพ่อตัวกระทิง (Bos gaurus) และพ่อตัวแจวิคัน (Bos javanicus) ของ而且还ดินแดนเช้าช่อม เพื่อกำรอนุรักษ์พันธุ์ (conservation program) และได้ยินการใช้ในการผสมข้ามพันธุ์ โดยอนุรักษ์เพื่อแก้ไข แบ่งใหญ่ที่มีโยงในพันธุ์ ที่ตั้งอยู่เป็นราว เรื่องราวโคป่าพันธุ์ในระหว่างโคป่า (wild cattle) และโคซีบูบ ที่มีปรับปรุงลักษณะ และโครงสร้างที่ใหญ่ขึ้น และมีความทนทานต่อสิ่งแวดล้อม โดยอาศัยความสามารถพันธุกรรมที่ดีของโคป่า ซึ่งมีขนาดใหญ่ และมีความสามารถในการต่อต้าน และสภาพอากาศที่ไม่สมบูรณ์ มากขึ้นในการปรับปรุงพันธุ์ (ธนิต และ คณะ, 1999) แต่เนื่องจากการผสมข้ามพันธุ์ระหว่างศีจริง ที่ดังกล่าว (interspecies hybridization) ไม่ว่าจะมีจำนวนโครโมโซมเท่ากันหรือต่างกัน ถือว่ามีความตื่นตัวทาง ประกอบกันขึ้นได้ เพื่อให้การดำเนินงานของโคป่าสัตว์ที่มีพฤติกรรม หรือโคซีบูบ (fusion) แบบต่างๆ ของโคป่าโคป่าที่จากมันกันและกัน ที่พยาบาลได้แก่ การเกิด Robertsonian translocation, tandem fusion ฯลฯ ซึ่งจะทำให้จำนวนโครโมโซมที่มี (diploid number) และปรับปรุง ของโคป่าและปล่อยปล้องไปจากจำนวนปกติ และอาจส่งผลทำให้ความตื่นตัวของระบบต่างกันตามมา โดยเฉพาะระบบสัมพันธ์ และยังผลต่อโครโมโซมที่คิดกับข้อ เห็นได้เพิ่มขึ้นตามคำศัพท์จากศิลปะการเกิด Gustavsson (1980)
รายงานว่า การเกิด 1/29 Robertsonian translocation ในโค จะมีผลทำให้ประสิทธิภาพความสมบูรณ์พันธุ์ลดลง นอกจากนี้ Forsdyke (2000) และ Zhang (2000) ยังได้รายงานการผสมผสานพันธุ์ระหว่างโค-โบ, กบ-โค และใน yak กบ-โคหรือกบ-โบ Bos taurus ซึ่งพบว่า ฤทธิสมบูรณ์ (F1) เพศมีเท่านั้นที่มีสมรรถภาพการสืบพันธุ์ได้ แต่ในฤทธิสมบูรณ์ (F1) เพศผู้จะเป็นแทน เมื่อมีลักษณะאותกลิติตาม

การศึกษา นี้มีลักษณะทางผลิตสืบพันธุ์ไร่ไทย (karyotype) ของฤทธิสมบูรณ์เกิดจากการในระยะยาว ซึ่งเป็นการผสมผสานพันธุ์ระหว่าง โค-โบ (พ่อกระทิง โค-โบ) กับโคซิวิส์ ร่วมกันจะเป็นประโยชน์ทางวิวัฒนาการ มีความผลิตปลอดภัยหรือไม่ และผลิตความสมบูรณ์พันธุ์อย่างไร ตลอดจนการบันทึกและการจัดข้อมูลในแต่ละระยะ เพื่อให้ทราบถึงความเป็นไปในที่การใช้ฤทธิสมบูรณ์ของโคไทยในปัจจุบันพันธุ์โคพันธุ์ใหม่ที่มีถิ่นที่อยู่ที่สารพัดได้ ฤทธิสมบูรณ์ที่มีความสามารถอย่างที่นี้ และมีความสามารถทางสถานภาพตลอดจนได้สรุปได้ ฤทธิสมบูรณ์ในการนำไปใช้ประโยชน์และใช้งานต่อไป

วัสดุและวิธีการ

เก็บตัวอย่างเลือดของฤทธิสมบูรณ์จำนวน 20 ตัว ที่เกิด จากการผสมผสานพันธุ์ซึ่งแช่แข็งของโค-กระทิงและพ่อกระทิง ของสุราษฎร์ปัญญาจินดาและโคซิวิส์ (พ่อกระทิงนม ฟันหยุ้น ชื้นตัวและพ่อเชือกแข็ง) ในท้องที่ โดยเป็นฤทธิสมบูรณ์ที่เกิดจากโค-กระทิงจำนวน 12 ตัว และเกิดจากโค-โบ ฟ่อโคเล็กจำนวน 8 ตัว และเก็บตัวอย่างเลือดของโคซิวิส์ที่นำมาใช้เชื้อเต็มจำนวน 10 ตัว ในขณะที่ตัวอย่างเลือดของพ่อกระทิงที่นำไปแช่แข็งจนเกิดฤทธิสมบูรณ์มีไม่ได้เกิดได้ เนื่องจากการตัวอย่างเลือดจะมียังไม่มีผลต่อการผสมผสาน และได้ทำการศึกษาไร่ไทยโดยการใช้ประโยชน์ทางวิวัฒนาการ ฤทธิ์สมบูรณ์และโคซิวิส์ (ออกฤทธิ์ทางวิวัฒนาการเพื่อการพัฒนา) ด้วยโค-โบใช้กับโคซิวิส์ซึ่งไม่สามารถเกิดตัวอย่างเลือดได้ เนื่องจากลำตัวต่างกันเมื่อมีประโยชน์ต่อการผสมผสานเพื่อปฏิกิริยาสมบูรณ์ และการจัดขนสัตว์จะต้องจับตามที่ผ่านมา เนื่องจากลำตัวสารพัดจากการทำให้ได้

ตัวอย่างเลือดในทดลองที่เน้น heparin เป็นสารป้องกันการแข็งตัวของเลือด เลือกการเพาะเลี้ยงเลือดมีเลือดขาวชนิด lymphocyte ในอาหารเลี้ยงซึ่งมีชื่อ minimum essential media ซึ่งมี 10% calf serum และ phytohaemagglutinin ปุ่มในสุนัขเลี้ยงเลือดที่มีฤทธิสมบูรณ์ 37oC เป็นเวลา 72 ชั่วโมง ซึ่งมีสิ่งช่วงได้ว่า 70 จะติดสารละลาย colcemid ลงไปเพื่อเพิ่มการทำกิจของเซลล์ให้อยู่ในระยะเวลาที่ไม่เกิน 2 ชั่วโมงเพื่อลดการเกิดเหตุการณ์และป้องกันการเกิดการเกิดเหตุการณ์สูง หลังจากนั้นนำตัวอย่างเลือดออกจากสุนัขเลี้ยง และทำให้เซลล์อยู่สภาวะละลาย hypotonic solution (0.075 M KCl) เป็นเวลา 10 นาทีแล้วทำให้เซลล์สูญน้ำในสารละลาย fixative และเก็บตัวอย่างไว้ในตู้เยี่ยมที่ที่อุณหภูมิ 4oC. วันถัดที่นั้นจะนำไปปฏิบัติให้ระยะ.experimental โดยตรวจดูกลุ่มเซลล์ที่มีฤทธิสมบูรณ์ที่มีถิ่นที่อยู่รูปร่างใหม่ และมีความสามารถทางสถานภาพตลอดจนได้สรุปได้ ฤทธิสมบูรณ์ในการนำไปใช้ประโยชน์และใช้งานต่อไป
ตารางที่ 1 ควาปโลปปิล แมวขี้ผึ้ง และโคญชมรมที่เกิดจากการเข้าใจของต่อกระตีง และพ่อโคモ่กับแมวขี้ผึ้ง

<table>
<thead>
<tr>
<th>จำนวนโครงการ (2n)</th>
<th>จำนวนและรูปแบบของโครงการเร็วที่ซึ่งมีการเข้าใจ</th>
<th>รูปแบบของโครงการคับเพลิง</th>
<th>เหรียญ</th>
</tr>
</thead>
<tbody>
<tr>
<td>แมวขี้ผึ้ง</td>
<td>60</td>
<td>-</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>โคญชมรมที่เกิด</td>
<td>58</td>
<td>2</td>
<td>54</td>
</tr>
<tr>
<td>จากแมวขี้ผึ้ง</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>ระยะแบบและแมวขี้ผึ้ง</td>
<td>12 ตัว</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>โคญชมรมที่เกิดจาก</td>
<td>59 ตัว</td>
<td>1</td>
<td>56</td>
</tr>
<tr>
<td>แมวขี้ผึ้ง</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>และแมวขี้ผึ้ง</td>
<td>3 ตัว</td>
<td>2</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>กลุ่มที่ 1 (6 ตัว)</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>กลุ่มที่ 2 (6 ตัว)</td>
<td></td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

ตารางที่ 2 การวิจัยเดิมของโคญชมรมที่เกิดจากแมวขี้ผึ้งของต่อกระตีง และพ่อโคโม่กับแมวขี้ผึ้ง

<table>
<thead>
<tr>
<th>ชนิดแมวขี้ผึ้ง</th>
<th>จำนวน (ตัว)</th>
<th>มวลกระตีง (กม.) (±SD)</th>
<th>มวลเนื้อ (กก.) (±SD)</th>
<th>มวลเม็ดอัมย์ 18 เทียน (กก.) (±SD)</th>
<th>อัตรากรดเจริญ ดี (อัตราส่วน: เทียน/ดี) (±SD)</th>
<th>อัตรากรดเจริญ เดิมที่เกิดวัตถุมงคล ของอัมย์ 18 เทียน (เรต/รัน) (±SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>แมวขี้ผึ้ง</td>
<td>6</td>
<td>28.67±4.52</td>
<td>172.50±11.88</td>
<td>320.50±24.95</td>
<td>719.17±42.12</td>
<td>435±52.68</td>
</tr>
<tr>
<td>แมวขี้ผึ้ง</td>
<td>3</td>
<td>25.33±6.11</td>
<td>178.77±16.39</td>
<td>329.33±37.21</td>
<td>767.00±65.54</td>
<td>442.33±85.92</td>
</tr>
<tr>
<td>แมวขี้ผึ้ง</td>
<td>3</td>
<td>20.33±0.58</td>
<td>144.33±29.77</td>
<td>283.33±17.04</td>
<td>620.00±147.56</td>
<td>408.33±55.72</td>
</tr>
<tr>
<td>แมวขี้ผึ้ง</td>
<td>3</td>
<td>22.33±4.16</td>
<td>148.87±12.99</td>
<td>284.00±17.78</td>
<td>632.67±65.16</td>
<td>397.00±14.53</td>
</tr>
</tbody>
</table>
รูปที่ 1 คาริโอโทปของเมโทชิจู

รูปที่ 2 คาริโอโทปของไลค์เนมิฟิสที่เกิดจากพ่อกระทิง และแม่ชิจู

รูปที่ 3 คาริโอโทปของไลค์เนมิฟิสที่เกิดจากพ่อกระทิง และแม่ชิจู
ข้ามเกษตรกริก ตัวใหญ่ (X) 2 ตัว ในเพศเมีย (รูปที่ 2, รูปที่ 3) (ตารางที่ 1)

ในขณะที่ในโคคูสแนม (F1) ที่เกิดจากกันแช่ของ ท้อ โคคูส และแมวโคชิบ แม้ว่าจะเป็นแมวแช่ของท้อโคคูส ตัวถึกลัน แต่พบว่าโคคูสแนมจะมีจำนวนโครโมโซมที่ต่างกันเป็น 2 กลุ่ม คือ กลุ่มที่ 1 (จำนวน 5 ตัว เป็นเพศผู้ 4 ตัว และเพศเมีย 1 ตัว) จะมีจำนวนโครโมโซมเป็น 2n=58 โดยมีโครโมโซมกลาง เป็นแบบ โครโมเซมเดียว จำนวน 56 ตัว และเป็นแบบข้ามเกษตรกริก จำนวน 1 ตัว ส่วนโคคูสแนม จะมีลักษณะเช่นเดียวกับใน Bos taurus และ Bos gaurus คงเป็นแบบ ข้ามเกษตรกริก ตัวใหญ่ (X) 1 ตัว และเกษตรกริก ตัวเล็ก (Y) 1 ตัว ในเพศผู้ และเป็นแบบข้ามเกษตรกริก ตัวใหญ่ (X) 2 ตัว ในเพศเมีย ในขณะที่โคคูสแนมในกลุ่มที่ 2 (จำนวน 2 ตัว ซึ่งเป็นเพศผู้ทั้งหมด) มีจำนวนโครโมโซมเป็น 2n=59 โดยมีโครโมโซมกลาง เป็นแบบ โครโมเซมเดียว จำนวน 54 ตัว และเป็นแบบข้ามเกษตรกริก จำนวน 2 ตัว โดยที่โครโมโซมเพศจะเป็นแบบเดียวกันในกลุ่มที่ 1 และข้ามเดียวกันใน Bos taurus และ Bos gaurus ซึ่งแสดงได้ดี ออกแย่ต่อไปที่เกษตรกริกไทยของโคคูสแนมจึงนี้ โครโมโซมเพศแต่ละกลุ่มจัดเรียงกัน
วิเคราะห์

การกระจายของโครโมโซมทุกตัวในการศึกษาที่เกิดจากน้ำเชื้อที่มีที่มีการเชื่อมต่อของโครโมโซม 2n=59 ในโคกอสรมุขิ (Bos javanicus) ที่มีสถานที่ต่างๆ จะเกิดการเชื่อมต่อ (centric fusion) ของโครโมโซม ตัวที่ 1 และ 29 (1/29 Robertsonian translocation) ทำให้จานวนโครโมโซมที่มีจำนวนโครโมโซมเป็น 2n=58 นั้นโครโมโซมที่มีการเชื่อมต่อของโครโมโซมเป็น 2n=58 จะเกิดจากการเชื่อมต่อของโครโมโซม ตัวที่ 1 กับ 29 (1/29 Robertsonian translocation) และจานวนโครโมโซม ตัวที่ 2 กับ 27 (2/27 Robertsonian translocation) ทำให้จานวนโครโมโซมที่มีจำนวนโครโมโซมเป็น 2n=60 ตัวที่ 2 ได้จานวนโครโมโซมที่มีจานวนโครโมโซมเป็น 2n=58 ตัวที่ 2 ได้จานวนโครโมโซมที่มีจานวนโครโมโซมเป็น 2n=60 ตัวที่ 2 ได้จานวนโครโมซ 2.

เมื่อสืบมาถึงความสุ่มสุ่มพันธุ์ (fertility) ของโคกอสรมุขิ (Bos javanicus) ที่มีจานวนโครโมโซม 2n=58 จานวนโครโมโซมที่มีจานวนโครโมโซมเป็น 2n=59 จำนวน 2 ตัว และจานวนโครโมโซมที่มีจานวนโครโมโซมเป็น 2n=58 จำนวน 1 ตัว ซึ่งแสดงว่า โคกอสรมุขิที่มีจานวนโครโมโซมที่มีจานวนโครโมโซม 2n=58 ที่มีจานวนโครโมโซม 2n=59 ที่มีจานวนโครโมโซมที่มีจานวนโครโมโซม 2n=58 ที่มีจานวนโครโมซ
และอื่นๆ เปิร์ค โลดพชษที่มีจำนวนโครโมโซมทั้งหมด
น้อยกว่า 60 จะเห็นจากภาพกลม Robertsonian translocation
ของโครโมโซมที่ 1/29 และ 2/27 โดยการจับการย้าย
ลักษณะของโครโมโซมตามแนวทางเช่นเดียวกัน แต่ในบางตาราง
มีนิยมที่เน้นขึ้นเป็นการซ่อนกลุ่มของโครโมโซมบางกลุ่ม
หลาย การสามารถทำได้โดยวิธี chromosome banding ซึ่ง
โครโมโซมเหล่านี้จะถูกย้ายออกอย่างเป็นจุดราวๆ และ
เมื่อถึงจุดสิ้นเมื่อเป็นเม็ด (band) ซึ่งมีลักษณะเฉพาะต่ำว
แต่ต่ำในโครโมโซม ซึ่งจะทำให้สามารถตรวจจับได้
โดยการทำเกิด Robertsonian translocation
ที่พบมากที่สุดในแบบเป็นรูป 1/29 Robertsonian translocation
(Gustavsson, 1966; Amrud, 1969) โดยมีผลทำให้
ประสิทธิภาพความสามารถพันธุ์ลดลง (Gustavsson, 1980)
เลือกเจ้าของมากกว่าในตัวเอง ซึ่งเป็นผู้ผลิตเชื้อ
สืบพันธุ์ที่ไม่สมดุล (unbalanced gametes) ซึ่งเป็นภัยคุก
ปลิวที่สำคัญ (Popescu and Pech, 1991; Plachot และ
Popescu, 1991) Iannuzzi et al. (2001) ได้รายงานการเกิด Robertsonian translocation ระหว่าง โครโมโซมบางกลุ่ม ตัวที่ 9 และ โครโมโซม Y (9/Y) ในพอชซึ่งมีลักษณะยากของ
ปกติ แต่ละพบค่อนข้างน้อย เหลือจึงไม่สามารถกลับ
สรุปได้ (azoosperma) นอกจากนี้ Popescu (1977a,b)
ถัดจากภาพกลม fusion ของโครโมโซมตัวที่ 3 และ 9 (3/9)
ในใหม่
จากบริโภคของปลูกพันธุ์ระหว่างไก่และไกชู้
ที่เกิดจากขั้นตอนที่เกิดขึ้น และพอปลอด ในสารสนเทศ
เนื่องไม่ได้เพิ่มขึ้นถึงความสมบูรณ์กับความสมบูรณ์พันธุ์
พบไม่ในปลูกพันธุ์นม ที่เกิดจากพอร์ค และ
พอปลอด สามารถให้ได้เป็นสัตว์ราษฎร แต่จะ
มีรูปร่างและจำนวนของโครโมโซมต่างกัน หรือมีการเกิด Robertsonian translocation ก็ตาม ไม่จะที่ในปลูกพันธุ์
พันธุ์ที่เกิดจากพอร์ค และพอปลอด ซึ่งวิจัยและ
วินัย (ตีคูบูตัวใหม่) ได้ทดสอบรีบเก็บมากว่า โดยการใช้
กระแสไฟฟ้ากระตุ้นการกระทำถี่ (electroejaculator)
ตั้งแต่ตัวที่ 2-4 ปี และระหว่างเม็ด seminal fluid โดยไม่มีการ
ป้องกัน ด้วยในปลูกพันธุ์ดูดี้เป็นงาน ซึ่งแตกต่าง
กันในสารสนเทศของ Bongo และแซน (1988) ซึ่งศึกษาในปลูกพันธุ์ระหว่างพอร์คของเม็กซิโก นอกจากนี้ ซึ่งมีรูปร่าง
และจำนวนโครโมโซมต่างกัน และพบว่ามีประสิทธิภาพ
การสืบพันธุ์ที่แตกต่าง ซึ่งอาจเป็นผลจากรูปแบบของการ
แยกตัว (segregation pattern) และการเบี่ยงตัวในระยะ meiosis
ของโครโมโซมมากยิ่งขึ้น ซึ่งมีขนาดติด
เท่ากับ 2 ตัว ที่ได้มาจากพอร์ค และเม็ดสัตว์ที่ปลูก
สมบุก ที่ไม่มีการย้ายของโครโมโซมที่เกิดขึ้น โดยพบว่า
ปลูกพันธุ์นมมีมีประสิทธิภาพการสืบพันธุ์ที่ใกล้กัน แต่กลุ่มพันธุ์ที่มีจำนวนโครโมโซมเท่ากัน ถูกพบในปลูกพันธุ์ที่มี (Nijman
et al., 2003) Zhang (2000) ซึ่งศึกษาการผสมพันธุ์ระหว่าง
yak กับไก่ ที่พบว่าปลูกพันธุ์ดูดี้เป็นแบบ ไก่จะมี
โครโมโซมจะปกติในเด็กแก่ ซึ่งตรงกับการศึกษาของ
Winter et al. (1988) ซึ่งศึกษาการผสมพันธุ์ระหว่าง
ไก์กับสุนัข (Mithun, Bos frontalis) กับไก่ (Siri,
Indicus) และรายงานไว้ว่า ปัญหาของประสิทธิภาพการ
สืบพันธุ์กลุ่มจะเป็นผลเนื่องจากโครโมโซมบางกลุ่ม
ไม่ไหวในปลูกพันธุ์ และยังไม่ได้ทำการศึกษาจากสัตว์จดวิทยา
ของเม็ดย่อยอวัยวะของปลูกพันธุ์ (F1) และพบว่าการสร้าง
สรุปเกิดขึ้นจะมีทั้งที่ระยะ pachyteny และไม่ได้
spermatid ใน seminiferous tubule และใน epididymis และ
จะพบแต่เพียง spermatic cell ที่ไม่น่าจะมี และ sertoli
chamber ที่จะมีเพื่อ แต่ไม่มีการมีเร่งเร็วของจุด sertoli cell
บางหลายคนที่เห็นสูงขึ้นของลูกอัณฑะ (testicular hypoplasia)
ได้ดูแล สาเหตุนี้เกิดจากการศึกษาของ Forsyde (2000) และ
Zhang (2000) ที่พบความสมบูรณ์พันธุ์ในปลูกพันธุ์ที่
เกิดจากการผสมพันธุ์ระหว่างพันธุ์ต่างกัน จะเกิดใน
homogamous sex ซึ่งเกิดเพื่อมีความเป็นที่ต้อง
โดย Pathak และ Keiffer (1979) และ Stekleven และ
Elistratova (1992) รายงานไว้ว่าขณะการฟักเมสิร์ในปลูกพันธุ์จะมีคุณประโยชน์ pachyteny เซลเด็กแก่ ซึ่งตั้งใจ
ไม่อาจใช้ในปลูกพันธุ์ในการปรับรูปพันธุ์ขึ้นต่อไปได้ และ
ใช้ประโยชน์เพื่อการบริโภค หรือเพื่อการใช้งานเป็นที่
จะพบในปลูกพันธุ์นมมีความสามารถใช้ประโยชน์ในการ
ปรับปรุงพันธุ์ต่อไปได้ โดยการ backcross หลายๆครั้งกับ
ไก่ หรือโดยใช้พันธุ์ที่ จะจนกว่าจะได้ปลูกพันธุ์ที่มี
การบริโภคที่ปกติ และสมบูรณ์ ซึ่งสามารถจัดวิวัฒน์ได้โดยใช้
ขั้นตอนการเตรียมต้นicorn และสมรรถภาพการสืบพันธุ์ ที่ใช้ได้
(Nijman et al., 2003 ; Riggs et al., 1997) โดย Winter
et al. (1988) พบว่าปลูกพันธุ์ต่าง ๆ ที่ได้จากการ backcross
จะมีการสร้างเมสิร์ที่ต่าง และประสิทธิภาพการสืบพันธุ์
คงอยู่ในกลุ่มพันธุ์เป็นรูปแบบ ไป ซึ่งอาจมีผลถึงการผลิต
การลูกจุด และมีการขยายพันธุ์ที่ขยาย (progressive segregation)
ของเม็ดที่มีผลต่อประสิทธิภาพของระบบสืบพันธุ์ ใช้กลุ่มแต่
เรื่องที่เกี่ยวข้อง

เนื่องจากปรากฏลักษณะการเจริญเติบโตของโลกผสมที่เกิดจากถิ่นพ่อกระต่ายและพ่อโคแลต แกนเมจิลัม พบว่า น้ำหนักในระยะต่างๆ และอัตราการเจริญเติบโตจะค่อนข้างสูง
และจะเปลี่ยนในระยะต่างๆ ที่ไม่สมบูรณ์สมส่วน และพบว่าสูงกว่าเกณฑ์พื้นฐานของทั่วไป ซึ่งเป็นไปเนื่องจาก
การเจริญเติบโตของโลกผสมที่มีคุณสมบัติต่างจากพ่อตัวและพ่อโคแลตในระยะต่างๆ ที่ไม่สมบูรณ์สมส่วน และพบว่าสูงกว่าเกณฑ์พื้นฐานของทั่วไป ซึ่งเป็นไปเนื่องจาก
การเจริญเติบโตของโลกผสมที่มีคุณสมบัติต่างจากพ่อตัวและพ่อโคแลตในระยะต่างๆ ที่ไม่สมบูรณ์สมส่วน และพบว่าสูงกว่าเกณฑ์พื้นฐานของทั่วไป ซึ่งเป็นไปเนื่องจาก

การผสมพันธุ์ระหว่างโคและปigmตัว (พ่อกระต่าย และพ่อโคแลต) กับไทยสูง ให้ลูกผสมที่มีจำนวนโครโมซิม (2n)
เท่ากับที่ได้รับถ่ายทอดจากแม่และแม่ในกลุ่มสำหรับ
ลูกผสมที่เกิดจากพ่อกระต่าย โดยจะมีจำนวนโครโมซิมเป็น 2n=58
แต่ในลูกผสมที่เกิดจากโคแลต เท่ากับแม่และแม่จะมีจำนวน
โครโมซิมเท่ากัน แต่ลูกผสมที่เกิดจากแม่จะมีจำนวนโครโมซิม
แตกต่างกันเป็น 2 แบบ คือ 2n=59 และ 2n=58 เนื่องจาก
มีการเกิด Robertsonian translocation ของโครโมซิม 1 อยู่และ
2 อยู่ให้จำนวนโครโมซิม (2n) คง 1 ตัว และ 2 ตัว
ตามล่าสุด โดยลูกผสมพันธุ์สะท้อนคล้ายที่พ่อโคแลตพ่อกระต่าย
และพ่อโคแลตสามารถให้ลูกได้จากการผสมพันธุ์ใน
จะที่ลูกผสมพันธุ์ฟาร์มเป็นแม่น อยู่ไม่เกิด โคแลตแต่ยังมี
ลักษณะการเจริญเติบโตที่น่าพอใจ แม้ว่าจะต่างจากในระยะที่
ไม่สมบูรณ์

สถิติการประมวล

คณะผู้วิจัยของทุกชุด น.พ.วิบูลย์ นุรักษ์ ที่ช่วยในการเก็บตัวอย่างเลือด และคุณสมบัติชัน และคุณสมบัติธรรมชาติ ยอมรับ ที่ใช้ปฏิบัติการต่อไปนี้การคิดในระยะเวลาของการศึกษา

เป็นที่น่าพอใจ และยังมีคุณสมบัติต่างจากความพันธุ์ แต่อย่างไรก็ตาม

เนื่องจากโลกผสมพันธุ์ (F1) อาจเป็นที่น่าจะใช้ประโยชน์เพื่อการศึกษาและใช้ประโยชน์ในวงกว้าง
และมีผลจะทำให้เกิดประโยชน์ จากประโยชน์ทางเศรษฐกิจอย่าง
มาก และในทางการใช้ประโยชน์ F1 จะมีผลดีต่อการผลิต
ตลอด จึงมีความซับซ้อนมาก และเห็นผลที่น่าจะทำจาก
พันธุ์รวมที่ยังไม่อาจหาได้ ทั้งยังมีช่องทางการ
ใช้ประโยชน์ด้วย

สำหรับไม่ใช้ประโยชน์ ที่จะทำให้ประโยชน์
ในการผสมพันธุ์ และรับประโยชน์จากพันธุ์ต่อไปได้ โดยวิธี backcross
กับพันธุ์หลัก เพื่อสร้างลูกในรุ่นต่อไป และเพื่อให้ได้
คุณสมบัติของ heterosis ที่สูงสุด

สรุป

การผสมพันธุ์ระหว่างโคกับไทยสูง ให้ลูกผสมที่มีจำนวนโครโมซิม (2n)
เท่ากับที่ได้รับถ่ายทอดจากแม่และแม่ในกลุ่มสำหรับ
ลูกผสมที่เกิดจากพ่อกระต่าย โดยจะมีจำนวนโครโมซิมเป็น 2n=58
แต่ในลูกผสมที่เกิดจากโคแลต เท่ากับแม่และแม่จะมีจำนวน
โครโมซิมเท่ากัน แต่ลูกผสมที่เกิดจากแม่จะมีจำนวนโครโมซิม
แตกต่างกันเป็น 2 แบบ คือ 2n=59 และ 2n=58 เนื่องจาก
มีการเกิด Robertsonian translocation ของโครโมซิม 1 อยู่และ
2 อยู่ให้จำนวนโครโมซิม (2n) คง 1 ตัว และ 2 ตัว
ตามล่าสุด โดยลูกผสมพันธุ์สะท้อนคล้ายที่พ่อโคแลตพ่อกระต่าย
และพ่อโคแลตสามารถให้ลูกได้จากการผสมพันธุ์ใน
จะที่ลูกผสมพันธุ์ฟาร์มเป็นแม่น อยู่ไม่เกิด โคแลตแต่ยังมี
ลักษณะการเจริญเติบโตที่น่าพอใจ แม้ว่าจะต่างจากในระยะที่
ไม่สมบูรณ์


