Abstract

Indhira Kramontong1* Waree Niyomthum1 Nuttee Am-in2 Piriya Uttama2 Vichuda Quanjai2

SOME EFFECTS OF ORGANIC ACIDS ON THE CONTROL OF
SALMONELLA IN BROILER CHICKENS

Three hundred and sixty day-old chicks were used in this study to investigate the effects of organic acids on the control of Salmonella. The chicks were divided into uninoculated and inoculated groups, 180 in each. Both groups were subdivided into 3 further groups of 60 chicks each. The uninoculated, control group comprised of, group 1 : given diluted organic acids 1:1000 via the drinking water, group 2 : given organic acids diluted at 1:2000 and group 3 : given water alone. Each bird in the three inoculated subgroups 4, 5 and 6 were orally dosed with 0.3 ml of brain heart infusion broth culture containing 6x10⁸ cfu/ml of Salmonella Enteritidis. Group 4 was treated with organic acids at 1:1000 dilution, group 5 : with 1:2000 dilution and group 6 given no treatment. Salmonella was cultured from pooled organs, liver, spleen and heart samples, as well as from cloacal swabs in all six subgroups when 10, 20, 30 and 40 days old, respectively. Ten chickens were randomly selected from each subgroup and weighed individually at each stage. The detection rates for Salmonella, which could be considered as a natural infection, among the uninoculated control subgroups (1, 2 and 3) showed no difference at 40 days of age, as were the excretion rates determined by positive cloacal swabs (p>0.05). In the inoculated groups, there were no significant differences among groups 4, 5 and 6 for Salmonella detection rates at 10, 20 and 30 days of age. The results showed differences only between groups 4 and 6 at 40 days, the same as the exclusion rates (p<0.05). Our study suggested that Salmonella detection in the inoculated group, treated with 1:1000 organic acids dilution, was reduced compared with the no treatment group (5% against 35%). In the same way, the excretion rate was lower than in the no treatment group (40% compared to 90%). The feed conversion rate of chickens aged 31-40 days, provided with organic acids in both the uninoculated and the inoculated groups were lower than in the no treatment groups. And the daily weight gains of those treated were greater than those with no treatment.

Keywords : organic acids, Salmonella, chicks

*Corresponding author

1 Deparament of Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330
2 The sixth year veterinary students, Faculty of Veterinary Science, Chulalongkorn University

กรุณาให้คำอธิบายว่าข้อความนี้เกี่ยวกับเรื่องอะไร
บทคัดย่อ

อนุทิน กระหม่อมทอง¹ วริยา นิชิธร² นายเรีย อัชณุศรี² พิยดา อุดมดำ³ วิชญา สร้อยใจ⁴

ประसัทธิภาพของกรดอินทรีย์ในการควบคุมเชื้อsalmonellaในไก่ฟาร์ม

ได้ทำการทดลองประชาระยากรดอินทรีย์รวมในการป้องกันการติดเชื้อ Salmonella Enteritidis ในกลไกกระชับอายุ 1 วัน จำนวน 380 ตัว ด้วยการแบ่งกลุ่มให้เป็น 2 กลุ่ม คือ กลุ่มควบคุมให้กินธัญพืชน้ำและกลุ่มทดลองให้กินธัญพืชน้ำและผลิตภัณฑ์เสริมอาหารสัตว์ กลุ่มละ 180 ตัว เฉลี่ย กลุ่มแบ่งเป็นกลุ่มละ 3 กลุ่มละ 60 ตัว ในการควบคุมการติดเชื้อ (1, 2 และ 3) คือ กลุ่มที่ 1 ไม่ให้กิน S. Enteritidis และให้กระชับหรือเป็นอัตราส่วน 1:1,000 ผสมให้กินทุกวัน กลุ่มที่ 2 ให้กินช้าและให้กระชับ 1:2,000 กลุ่มที่ 3 ให้กินช้าและไม่ให้กระชับ ระหว่างกลุ่มทดลองที่ 1 ในกลุ่มแรกที่ 1:3 ให้ S. Enteritidis ทำลายถูกทำลาย S. Enteritidis จากวิธีวิจัย คือ ตัว ผัก ทำลาย และทำลายฤดูร้อน จากกลุ่ม 6 กลุ่มละ 10 ตัว เก็บช้า 10, 20, 30 และ 40 วัน ผลการทดลองเขียนไว้ในเอกสารที่ระบุในตาราง ได้รับผลชัดเจน จากการทดลองในกลุ่มที่ 1, 2 และ 3 ที่สูงในการติดเชื้อพื้นที่ไม่ใช่ช้าหรือช้าสัตว์ พบว่าไม่มีผลกระทบต่อกลุ่มละ 40 วัน และเป็นไปตามหลักเกณฑ์การกระชับจาก 1,2,3,6 ในกลุ่มช้าที่ 1 ในกลุ่มแรกที่ 1:3 ไม่มีการตกผลึกต่อกันในระหว่างกลุ่มที่ 4, 5 และ 6 ในกระชับ 10, 20, 30 และ 40 วัน ผลการทดลองไม่เกี่ยวข้องกับการควบคุมช้าในกลุ่มที่ 5, 6 ในกระชับ 1:1,000 กระชับช้าในกลุ่มที่ 5 นั้นไม่ได้ช้าและไม่ได้กระชับ 1:2,000 กระชับช้าในกลุ่มที่ 6 นั้นไม่ได้ช้าและไม่ได้กระชับ (p<0.05) ในกลุ่มช้าที่ 1 ในกลุ่มแรกที่ 1:3 ไม่มีการตกผลึกต่อกันในระหว่างกลุ่มที่ 4, 5 และ 6 ในกระชับ 10, 20, 30 และ 40 วัน แต่กลุ่มที่ 1 ในกระชับ 40 วัน เฉลี่ยกลุ่มที่ 4 ต่างจากกลุ่มที่ 6 (p<0.05) นั้นคือ ไม่ใช่ช้าและไม่ได้กระชับ 1:1,000 กระชับช้าในกลุ่มที่ 6 นั้นไม่ได้ช้าและไม่ได้กระชับ 1:2,000 กระชับช้าในกลุ่มที่ 6 นั้นไม่ได้ช้าและไม่ได้กระชับ (p<0.05) ในกลุ่มช้าที่ 1 ในกลุ่มแรกที่ 1:3 ไม่มีการตกผลึกต่อกันในระหว่างกลุ่มที่ 4, 5 และ 6 ในกระชับ 10, 20, 30 และ 40 วัน และมีกลุ่มที่ไม่ได้กระชับต่อกันด้วยข้อมูลดังกล่าว

คำสำคัญ: กรดอินทรีย์ กลไกฟาร์ม ไก่

บทนา

ปัจจุบันการคัดถ่างสารปฏิจะในไก่หรือสัตว์ที่ปลูกมาใช้เป็นอาหาร เป็นสิ่งสำคัญต่อการควบคุมโรคและรัฐฉาระควบคุมบริเวณของตนเอง เมื่อกลัวให้ฝึก มาตรการกีดกันทางการคัดถ่างกลไกระหว่างประเทศชาติ โดยมีวัตถุประสงค์ที่จะคัดถ่างสารปฏิจะในอาหารสัตว์ ซึ่งจะส่งผลกระทบต่อผู้บริโภคในลักษณะของการติดเชื้อ ที่ทำให้เกิดโรคต่างๆ ในมนุษย์ (Malbak et al., 2002) โดยเฉพาะอย่างยิ่งในไก่ เป็นต้นผู้รู้ในกลุ่มโครงสร้างวัสดุ ที่ตั้งอยู่บนผิวช้าในแหล่งธัญพืช ต้องจัดการการป้องกัน ท้องสัตว์ อาบน้ำ และการซัก ยาซักกิ้งช้าในแต่ละที่คุณSHIP ของสุนัขหรือปัสสาวะ ที่มีผิวภูมิคุ้มกันที่ผิวภูมิคุ้มกันโดยสมัยไปกับการคัด และifik (Byrd et al., 2001) เป็นที่ยอมรับกันที่ไม่ได้เนื่องในไก่และปลูกมาเป็นแหล่งพาหะเชื้อไม่สัตว์ (Varavithya et al., 1990; Misher et al., 1991; Guard and Petter, 2001; Rose et al., 2002) ดังนั้นจึงต้องมีการคัดถ่าง และพยายามลด การเปลี่ยนของเชื้อช้าในกลไกและข้อต้องการต่างๆ ดังนั้น การคัดถ่างสารปฏิจะ (organic acid) ชนิดต่างๆ โดยทำให้ ผลการคัดถ่างเชื้อจากตัวผู้รู้ในกลุ่มโครงสร้างวัสดุ เพื่อช่วยในการติดเชื้อเป็นการกลุ่มต่าง และที่ต้องการที่จะควบคุม (pH) ลด ซึ่งสารปฏิจะต้องใช้ในกลไกและผลตัวผู้รู้ในกลุ่มโครงสร้างวัสดุ และผู้รู้ในกลุ่มไม่ได้ต้องการที่จะควบคุม (RCOO-) จากการ ฉีดรอบสารปฏิจะหรือ DNA ทำให้ช้าไม่สามารถ replicate หรือ ทำให้รู้จัก เมื่อ pH ในทางเดินอาหารจะลดลง แต่ไม่มี มันสำหรับ ซึ่งไม่มีผลต่อการเรียนรู้โดยข้อต้องการที่
สรุปการผลิต (Canibe et al., 2001)

รายงานที่อ้างอิงไว้ ได้แก่ การทดลองนึงทางอินทรีย์ที่มีส่วนผสมของกลดสีได้ให้กับกลุ่มที่ไม่ได้รับ S. Enteritidis ในบรรดาพืชทั้งหมด ที่ถูกเป็นตัวเชื้อ และกลุ่มนี้ได้รับอินทรีย์ ถ้าฉีดไม่ให้กลุ่มที่ได้รับ S. Enteritidis ได้รับอินทรีย์ (Barnhart et al., 1999) และอีกหนึ่งการศึกษาที่ใช้ S. Typhimurium ที่อ้างถึงความมีส่วนผสมของกลดอินทรีย์ (0.5% กลดเซลล์ ผลิตภัณฑ์ หรือฟรรนิก) ได้กับมุกวาการผลิต S. Typhimurium ในการทดลอง ของกลุ่มที่ไม่ได้รับเจ้า_IO หรือผิดปกติ

ในประเทศไทย ได้มีการศึกษาเกี่ยวกับการเพิ่มการเจริญเติบโตของ S. Enteritidis ที่มีผลได้จากกลดก้านที่กว่าที่ 79 เชื้อใน vitro พยายามที่ความเชื่อมต่อ 1:250 สารละลายของกลดที่ปลอดภัย ฉีดเชื้อ ผลิตภัณฑ์ และประโยชน์ มีประสิทธิภาพในการทำลายเชื้อกลดสีในกลดขนาด 10^6-10^7 cfu/ชิ้น (นม.) ในแต่ละชีวิตได้ยังถูกว่าการใช้กลดอินทรีย์ลดลงในเกณฑ์น้อยกว่า 50-100 ppm ให้กับกลุ่มทุกๆ ชีวิตในการป้องกันและจัดจัดเชื้อจากตลาด อันได้ถ่ายทอดให้กับไม่ใช้กลดอินทรีย์ และเป็นผลดี เนื่องจากประสิทธิภาพการลดลงของกลดในช่วงนั้นกลับตัวเลือกที่ 30-40 วัน ได้ถึง ศูนย์กลุ่มที่ไม่ใช้กลดอินทรีย์ (จริง และแคละ, 2002) การทดลองนี้จึงมีอุปสรรคที่จะใช้ส่วนผสมของกลดอินทรีย์บางชนิดที่มีการไม่เหมาะสม ใช้กลดทำลายกลดสีในช่วงที่ใช้ในระยะสั้น แต่ทว่าการ เยื้องเป็นเวลาตามเกณฑ์กระตุ้นส่วนใหญ่ในประเทศ ตามแนวการใช้สารเคมีและสารปฏิวัติอื่นๆ

อุปกรณ์และวิธีการ

เขตแบบชนิด

เขตที่ใช้เป็นได้ คือ Salmonella Enteritidis (nal)

ซึ่งได้คงคลื่นติบิลซิจ (nalidixic acid resistance-nal) ได้รับจากภาควิชานั้น เพาะชำกรดสีจากสื่อการให้ตัวอย่าง ได้แก่ บน stock agar ที่มีสูตรยูริค จาก stock agar นำนามีนามใน 3 ชั้น ได้แก่ นำน้ำมันยูริคในสื่อการให้ตัวอย่าง บน stock agar ขนาดความขั้นประมวล 0.85% NaCl ให้มี ความขั้นTERNANT 10^8 cfu/ml.

ให้ทดลอง

ถ้าใช้ทดลอง 1 วัน แต่ละฟัก จำนวน 360 ตัว เรียงในบรรดาช่องที่บรรจุกลดสี S. Enteritidis (Chair) เพาะกรรมภูมิภาค การทดลองจึงนี้เป็น 2 กลุ่มโดยกลุ่มละ 180 ตัว คือ กลุ่มควบคุมไม่ให้เชื้อและกลุ่มทดลองให้เชื้อ โดยกลุ่มทดลอง 3 กลุ่ม คือ

(1) กลุ่มควบคุมไม่ให้เชื้อแบ่งเป็น

กลุ่มที่ 1 ไม่ให้เชื้อ S. Enteritidis และไม่ให้กลดอินทรีย์

กลุ่มที่ 2 ไม่ให้เชื้อ S. Enteritidis และให้กลดอินทรีย์

กลุ่มที่ 3 ไม่ให้เชื้อ S. Enteritidis และไม่ให้กลดอินทรีย์

(2) กลุ่มทดลองให้เชื้อแบ่งเป็น

กลุ่มที่ 4 ให้เชื้อ S. Enteritidis และให้กลดอินทรีย์

กลุ่มที่ 5 ให้เชื้อ S. Enteritidis และให้กลดอินทรีย์

กลุ่มที่ 6 ให้เชื้อ S. Enteritidis และไม่ให้กลดอินทรีย์

โดยมีผลลัพธ์โดยไม่ได้ผลในกลุ่มที่ 6 แต่กลุ่มโดย กลุ่มทดลอง 30 วันถึงแล้ว กลุ่มที่ไม่ให้เชื้อแต่กลับพบที่กลุ่มให้เชื้อ

วิธีการทดลอง

ถ้าใช้ให้รับนั้น หรือกลดอินทรีย์ผสมนั้นให้กับตัวแล้วส่ง

ข้อที่ใช้กลดสีแล้วส่งสู่การทดลอง ส่วนผสมของกลดอินทรีย์ที่ใช้ประกอบด้วย กลดเซลล์ 25% (w/v) กระจกเซลล์ 25% (w/v) การผสมของกลดอินทรีย์ที่ให้เกิดกับ 60 µg/ml görü้กับกลุ่มที่ 2 ไม่ให้กลดอินทรีย์ ให้ระบุเรียบร้อยตามระยะสั้น เบนซินและน้ำผสมกลดอินทรีย์ที่ได้เกิดกับทุกส่วน การให้

สำหรับสิ่งที่จะได้รับสูตรสารเคมีจะไม่เกิดกับกลุ่ม 3 รายที่จะรับการทดลองได้เช่น

ผลการทดลองให้เชื้อ ตรวจเชื้อในตัวอย่างให้

ทั้ง 6 กลุ่ม และ 10 ดี (กลุ่มอย่างละ 5 ตัว) ทั้งหมด 60 ตัว นำน้ำมันยูริคในสื่อการให้ตัวอย่าง ได้ผล

ผลการทดลองให้เชื้อ ตรวจเชื้อในตัวอย่างจากให้

ทั้ง 6 กลุ่มและ 10 ดี (กลุ่มอย่างละ 5 ตัว) ทั้งหมด 60 ตัว นำน้ำมันยูริคในสื่อการให้ตัวอย่าง ได้ผล
หัวใจ) และสายwerpุจาระระ ระดับอ่างไกลยเคลคและรัง 120 ตัวอย่าง การตรวจวัดเบื้องต้น 4 กรัม ที่ใส่ยู 10, 20, 30 และ 40วัน ในระยะเวลาเดียวกัน จับกันที่มีอัตราเกิด 14-15 ตัว จากทุกกลุ่มขยัน หรือ 28-30/60 ตัว การเตรียมตัว

เพราะแยกขึ้น ขาดโมเลกุล โดยวิจัยของ De Smedt และคณะ (1998) นาตัวอย่างวัวทราย (เด็ก ป้า และทัวใจ) ตับเป็นชิ้นเล็กๆ ประมาณ 1 กรัมใน buffer peptone water (BPW) ซึ่งเป็น pre-enrichment media 9 มล. แล้วเป็น ตัวอย่างสู่การเตรียมตัวใน BPW 4 มล. ที่ 37° C เป็นเวลา 18-24 ชั่วโมง เสร็จสิ้นในทดลองการเลือกซื้อ BPW 150 ไมโครลิตร นำกล่องใน modified semi-Rappaport Vassiladis (MSRV) เป็น enrichment media นำไปอยู่ที่ 42° C 18-48 ชั่วโมง แล้วเลือกตัวอย่างโดยไม่เสียเพราะใน selective media คือ xylose lysine desoxycholate (XLD) ที่เหมาะสมอันดับ 25 ไมโครเม็ด (การตรวจเช็ด ขาดโมเลกุลในอุปกรณ์ แยกเป็นชิ้น ภาวะเลือกซื้อ XLD จะไม่เหมาะสมอันดับ 2) จากนั้นนำกล่องที่ 37° C 18-24 ชั่วโมง นำกล่องในชิ้นดูสภาพดีและเติบโตดีที่สุดจะส่งมายังทดสอบใน triple sugar iron (TSI) และ lysine iron agar (LIA) นั้นที่ 37° C 18-24 ชั่วโมง เซ็ตว่าสามารถเลือกประเด็นจากกลุ่มจูง สร้าง ลักษณะโดยไม่ใช่了一口 ใน TSI และให้กล่องใน LIA เป็นชิ้นที่ส่งสู่เป็นชิ้นขาดโมเลกุล จะนำไปทดสอบ อันดับล้วน Salmonella O polyvalent กลุ่ม A ถึง 67 และซอมีรูปจมแยกกลุ่มต่างๆ คือ B, C, D, E และ G โดยได้ผลที่เปรียบเทียบแยกกลุ่ม agglutination และชิ้นรูป ดับใช้ตามแต่จะของ S. Enteritidis

การวิเคราะห์ชูขยัน

วิเคราะห์ชูขยันโดยใช้โปรแกรม SPSS version 9.0 เปรียบเทียบชูขยันต่างๆระหว่างการทดลอง ขาดโมเลกุล และเปรียบเทียบการจัดหาของต่างๆระหว่างการทดลอง ขาดโมเลกุล ชูขยันขยันเวลา (100- จำนวนขยันของตัวอย่างระหว่างการทดลอง) ในระหว่างกลุ่มควบคุมไม่ใช่ขยัน และกลุ่มทดลองใช้ขยัน โดยการทดลอง Chi-square วิเคราะห์ชูขยันของต่างๆที่เฉลี่ยชูขยัน (average daily weight gain-ADG) และอัตราการ แปลง веществ (feed conversion ratio - FCR) โดยใช้วิเคราะห์การแปลง (ANOVA) และเปรียบเทียบชูขยันในระหว่างกลุ่ม ควบคุมไม่ใช่ขยัน (กลุ่ม 1, 2 และ 3) และกลุ่มทดลองใช้ขยัน (กลุ่ม 4, 5 และ 6) ด้วยวิธี Duncan Multiple Range

ผลการทดลอง

ผลการคลื่นซัดเป็นการเปิดฝักบัวและจัดจับขั่วขาดโมเลกุล

กลุ่มเกณฑ์การทดลอง ปรากฏว่าขาดโมเลกุลในกลุ่มซัดเป็น
ต่างๆ คือ B และ C ในกลุ่ม 1, 2 และ 3 กลุ่ม ควบคุมไม่ใช่ขยัน (กลุ่ม 1, 2 และ 3) และกลุ่มทดลองใช้ขยัน (4, 5 และ 6) หลังจากเป็นขยันในกลุ่มทดลองให้ขยันแล้ว ผลการตรวจขาดโมเลกุล จาตัวอย่างวัวทราย และวิธีการผลิตสูงในระหว่าง วันละของสุนัขชุด ที่กลุ่มควบคุมไม่ใช่ขยัน ซึ่งจะเป็น การใช้ขยันจาก vertical transmission เสร็จสิ้นข้อมูล ได้แก่ การนี้ ทำกับหน่วย เป็นดั้ง พบว่ากลุ่มที่ 2 มีการตรวจพบ ขาดโมเลกุลสูงกว่ากลุ่ม 1 และ 3 อย่างมีนัยสำคัญ เหมือนกันอยู่ 10 และ 20 วัน แต่หลังจากนั้นขาดโมเลกุลไม่เคลื่อนที่กลับ 3 กลุ่ม ที่ 30 และ 40 วัน (p<0.05) เช่นเดียวกันผลการทดลองขาดโมเลกุลแสดงถึงว่าได้จาก การวิเคราะห์คลื่นซัดเป็นการตรวจสอบสูงระหว่างกลุ่มต่างๆ เช่นกลุ่ม 2 จัดขยันได้ไม่ต่างจากกลุ่มที่ 3 กลุ่ม (ตารางที่ 1) 3 กลุ่มทดลองทดลองใช้ขยัน เมื่อเปรียบเทียบผลการตรวจพบชุด และกินชูขยัน พบว่ามีความแตกต่างกันในระหว่างกลุ่มที่ 4, 5 และ 6 ที่อยู่ 10, 20 และ 30 วัน แต่แตกต่างกันอยู่ 40 วัน เพราะกลุ่มที่ 4 ต่างจากกลุ่มที่ 6 นั่นคือ กลุ่มที่ใช้ขยันและให้การกระตุ้นวิเคราะห์ 1:1000 ตรวจพบขาดโมเลกุลสูงกว่ากลุ่มที่ไม่ใช้ขยันไม่ใช้การกระตุ้น 5% เพื่อยัง 35% และสามารถจัดการได้โดยการกระตุ้นไม่ได้กลุ่มมีต่ำกว่า 90% ที่อยู่ 50% (p<0.05) กลุ่มที่ใช้ขยันและให้การกระตุ้น 1:2000 ตรวจพบชุด และจะจัดการได้ไม่ต่างจากกลุ่มที่ใช้ขยันและไม่ใช้การกระตุ้น ผล (ตารางที่ 2)

ผลของการสำคัญไม่มีผลกระทบ

เปรียบเทียบ ADG และ FCR ในระหว่างกลุ่มควบคุม ไม่ใช่ขยัน (กลุ่ม 1, 2 และ 3) ตัวแยกเป็นผลิตสูงในสุนัขการ ทดลอง พบว่าไม่ได้ทำกับการผลิตชุด แต่ในกลุ่มควบคุม (กลุ่ม 4, 5 และ 6) ตัวผลิตสูงกลุ่มได้ใช้การกระตุ้นสำหรับ (รวมทั้ง 1:1000 และ 1:2000 รวมถึง ADG มีแนวโน้มสูงกว่ากลุ่มไม่ใช้การ และ FCR ไม่มีแนวโน้มต่างกันกลุ่มไม่ใช้การกระตุ้นที่สูงสุด 31-40 วัน ผลการทดลองนี้ บ่งชี้ให้ใช้ ดำเนินการเดียวกับกลุ่มทดลองใช้ขยัน (กลุ่ม 4, 5 และ 6) แสดง ในตารางที่ 3
ตารางที่ 1 แสดงการตรวจพบซ้ำขาไก่ผมในกลุ่มควบคุมไม่ให้ซ้ำ กลุ่ม 1, 2 และ 3 ปรีบเทียบกันที่อายุ 10, 20, 30 และ 40 วัน

<table>
<thead>
<tr>
<th>อายุ (วัน)</th>
<th>กลุ่ม</th>
<th>จำนวนไก่</th>
<th>อายุรวม (%</th>
<th>สถาป (%</th>
<th>รวม (%</th>
<th>การขัดจังที่ซ้ำ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2</td>
<td>10</td>
<td>3</td>
<td>30</td>
<td>90</td>
<td>6/20</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>10</td>
<td>3</td>
<td>30</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>30</td>
<td>2</td>
<td>10</td>
<td>1</td>
<td>10</td>
<td>7</td>
<td>70</td>
</tr>
<tr>
<td>40</td>
<td>2</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>30</td>
</tr>
</tbody>
</table>

*: ความแตกต่างอย่างมีนัยสำคัญทางสถิติ
*: จำนวนจาก 100 จำนวนร้อยละของตัวอย่างสะสมจากระยะที่ตรวจพบ

ตารางที่ 2 แสดงการตรวจพบซ้ำขาไก่ผมในกลุ่มควบคุมให้ซ้ำ กลุ่ม 4, 5 และ 6 ปรีบเทียบกันที่อายุ 10, 20, 30 และ 40 วัน

<table>
<thead>
<tr>
<th>อายุ (วัน)</th>
<th>กลุ่ม</th>
<th>จำนวนไก่</th>
<th>อายุรวม (%</th>
<th>สถาป (%</th>
<th>รวม (%</th>
<th>การขัดจังที่ซ้ำ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5</td>
<td>10</td>
<td>9</td>
<td>90</td>
<td>7</td>
<td>70</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>10</td>
<td>6</td>
<td>60</td>
<td>6</td>
<td>60</td>
</tr>
<tr>
<td>30</td>
<td>5</td>
<td>10</td>
<td>6</td>
<td>60</td>
<td>8</td>
<td>80</td>
</tr>
<tr>
<td>40</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>20</td>
</tr>
</tbody>
</table>

*: ความแตกต่างอย่างมีนัยสำคัญทางสถิติ
*: จำนวนจาก 100 จำนวนร้อยละของตัวอย่างสะสมจากระยะที่ตรวจพบ
ตารางที่ 3 ผลการป้องกันที่นอนน้ำหนักที่เพิ่มขึ้นต่อวัน และอัตราแพ้เนื้อของไก่กลุ่มที่ให้การฉีดวัคซีน และไม่ให้การที่ช่วงอายุต่างๆ

<table>
<thead>
<tr>
<th>อายุ (วัน)</th>
<th>น้ำหนักที่เพิ่มขึ้น/วัน (กรัม) ± SD</th>
<th>อัตราแพ้เนื้อ ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ไม่ได้ให้วัคซีน</td>
<td>ให้วัคซีน</td>
</tr>
<tr>
<td></td>
<td>ให้การ</td>
<td>ไม่ให้การ</td>
</tr>
<tr>
<td>3-10</td>
<td>14.05 ± 0.89</td>
<td>14.89 ± 0.12</td>
</tr>
<tr>
<td>11-20</td>
<td>25.98 ± 1.26</td>
<td>26.58 ± 0.80</td>
</tr>
<tr>
<td>21-30</td>
<td>54.18 ± 1.75</td>
<td>56.50 ± 2.78</td>
</tr>
<tr>
<td>31-40</td>
<td>85.47 ± 5.43</td>
<td>81.74 ± 13.00</td>
</tr>
</tbody>
</table>

วิธีการ

การทดลองครั้งนี้มีปัจจัยที่ควบคุมไม่ได้ คือ เชื้อ ซาโนโมเลส์ซิฟอสิเรียติส โดยที่จะได้รับการฉีด ผลการ ตรวจสอบเชื้อซาโนโมเลส์ซิฟอสิเรียติสอยู่ในไก่กลุ่มเมื่ออายุ 3 วัน ก่อนเริ่มการทดลอง แต่ไม่ได้เรื่อง เชื้อดังกล่าว จัดมาต้นการที่ หรือของการที่มันเลือกหรือกระจาย vertical transmission ดังนั้น ในกลุ่มนี้สุกุมไม่ได้เชื้อ (กลุ่มที่ 1, 2 และ 3) จึงสามารถตรวจสอบเหล่านี้ได้ดีสูงที่สุดเพราะ ซึ่งกลุ่มที่ 2 มีการฉีดวัคซีน น้ำหนักกลุ่มที่ 1 และ 3 อย่างน้อยสักสิ้น ที่อายุ 10 วัน และ 20 วัน จึงมีความเป็นไปได้ว่า จานเวลาของซึ่งเชื้อสุกุมได้กลุ่มที่ 2 ได้รับอุณหภูมิวูมมากกว่า กลุ่ม 1 และ 3 หรืออุณหภูมิการปอดเพียงในขั้นตอนการ เผยแพร่ซึ่ง เมื่อสังเกตการทดลอง ถ้าการพื้นผิวของตุ่ นกลุ่มผลิต ซึ่งไม่อาจสรุปได้ว่าการทดลองของผลการที่ไม่ แสดงถึงประสิทธิภาพจากประสิทธิภาพของการฉีดวิธี เมื่อนำไปรู้ปริมาณพื้นที่แต่ละกลุ่มรับข้าวิ นักก่อนและ หลังให้วัคซีนซิฟอสิเรียติส (S. Enteritidis) ให้ ได้ผลที่ถูกต้องโดยผ่านการทดลอง XLD เพื่อชี้เชื้อซิฟอสิเรียติส D อาจไม่ครอบคลุมต่อ S. Enteritidis ทุกขั้น การทดลองครั้งนี้ จึงได้ทำการประเมินผลการฉีดวัคซีนซิฟอสิเรียติส ที่การศึกษาซิฟอสิเรียติส ใช้วิธีเส้นจากกลุ่มที่ 4, 5 และ 6 เมื่อรู้ปริมาณเนื้อของ S. Enteritidis (mad) ที่ใช้ในการทดลอง ไม่สามารถประเมินผลกระทบ ในการฉีดวัคซีนซิฟอสิเรียติส ได้โดยทุกการสุ่มโดยจากตาราง XLD เพื่อชี้เชื้อซิฟอสิเรียติส D อาจไม่ครอบคลุมต่อ S. Enteritidis ทุกขั้น การทดลองครั้งนี้ จึงได้ทำการประเมินผลการฉีดวัคซีนซิฟอสิเรียติส ที่การศึกษาซิฟอสิเรียติส ใช้วิธีเส้นจากกลุ่มที่ 4, 5 และ 6 ฟันได้ที่อายุ 10, 20 และ 30 วัน ที่ไม่แตกต่างกัน อาจเนื่องมาจากกลุ่มไม่ได้ฉีด ที่ ได้รับการฉีดวัคซีนหรือได้รับกลุ่ม (colonize) ไม่ได้ส แต่จึงสรุปว่าผลการทดลอง นี้ในผลสำหรับวัคซีนและกลุ่มที่ (Soerjadi et al., 1981; Spencer and Garcia, 1995) จึง ไม่มีผลต่อการสูงสุดที่ใช้ได้โดยการวิเคราะห์ โดยทั่วไป ทำให้ได้ข้อมูลจากผลวัคซีน เมื่ออายุน้อย การตรวจสอบซึ่งจะฉีดผลหลังอายุ 3 สัปดาห์ มี microflora ในกลุ่มจะไม่ได้รับพื้นผิวมากเท่ากับและร่วมกลุ่ม จับตัวเชื้อซิฟอสิเรียติส ในผลเดียวกันก็ได้สูงเช่นกันที่ต้องการ ซึ่งจะต้องสูงสุด 3-4 สัปดาห์หลังให้วัคซีน เช่นกลาว ปราบพิษ (Seuna, 1978; Hassan et al., 1990) จากการทดลอง เมื่ออายุ 40 วัน การตรวจพบเชื้อจากสูงสุดในกลุ่ม ทดลองให้เชื้อและไม่ใช้การ (กลุ่มที่ 4 และ 5) น้อยกว่าอย่าง เห็นได้ว่าจากกลุ่มที่ไม่ได้ใช้การ (กลุ่ม 6) ซึ่งตัวทดลอง จากด้วยเหตุผลนี้ เป็นข้อมูลเชิงความ支线任务ในการจัด ซึ่งกลุ่มใหญ่จากวัคซีน (exclusion) (Soerjadi et al., 1981) โดยกลุ่มไม่ใช้การ 1:1000 สามารถจัดเรียงค่อนข้าง кажется (90%) ได้มากกว่ากลุ่มไม่ใช้การ (40%) ในที่ต้องการกลุ่ม กลุ่มที่ให้วัคซีน 1:1000 สามารถจัดเรียงกลุ่มที่ตรวจพบเชื้อ ซิฟอสิเรียติส (5%) ได้มากกว่ากลุ่มไม่ใช้การ (35%) อย่างมี นัยสำคัญ ซึ่งแสดงถึงผลตัดการทดลองของเรียนและทดสอบ (2002)

ในส่วนปีนี้ เป็นที่ทราบกันว่า เชื้อท่อกโรค เชื้อซิฟอสิเรียติส ซึ่งเป็นอีก แหล่งแห่งนี้น่าจะเป็นการป้องกันเชื้อซิฟอสิเรียติส ที่ได้จาก (Hargis et al.,1995) การฉีดวัคซีนที่เหมาะสมทำให้
(Harvey, 1985)

Ano, การทดลองสั่งที่มีผลต่อการผลิตของนกนกในระยะยาวได้สูงถึง 63-68.

