Seroprevalence of Antibodies against *Bartonella hensalae* Infection in Cats and Dogs along the Northern Borders of Thailand

Decha Pangjai 1* Soichi Maruyama2 Sumalee Boonma3 Wimol Petkanchanapong1 Wattanapong Wootta1 Pathom Sawanpanyalert1

Abstract

Bartonella hensalae is a causative agent of cat scratch disease that has serious zoonotic potential for people. The aim of the present study is to examine seroprevalence of antibodies against *B. hensalae* in cats and dogs along the northern borders of Thailand in Chiangrai, Maehongson and Nan provinces using the indirect fluorescent antibody test (IFA). A total of 169 serum samples derived from 56 cats and 113 dogs were collected from 3 provinces along the northern borders of Thailand. It was found that the average percentage of positive rate to *B. hensalae* in Chiangrai, Maehongson and Nan provinces was 73.0%, 52.0% and 0.0%, respectively with the cut-off value of 1:32. The seroprevalence of cats from the Thailand-Myanmar border (Chiangrai and Maehongson provinces) was significantly higher than that of cats from the Thailand-Laos PDR border (Nan province) (61.8% vs 0.0%, *p*<0.001). There was no prevalence of antibodies against *B. hensalae* from dogs in the 3 provinces.

Keywords: *Bartonella hensalae*, cats, dogs, the northern borders of Thailand
บทคัดย่อ

ความชุกของแอนติบอดีต่อการติดเชื้อ Bartonella hensalae ในแมวและสุนัขในพื้นที่ชายแดนไทยภาคเหนือ

ศาสตราจารย์ 1 เดชา แปงใจ, 2 สุมาลี บุญมา, 3 วัฒนพงศ์ วัฒนา, 4 ปฐม สวรรค์ปัญญาเลิศ

Bartonella hensalae เป็นสาเหตุของโรค Bartonellosis ซึ่งเป็นโรคติดต่อจากสัตว์สู่คน คณะผู้วิจัยจึงได้ศึกษาหาความชุกของแอนติบอดีต่อการติดเชื้อในแมวและสุนัขในพื้นที่ชายแดนภาคเหนือ ได้แก่ จังหวัดเชียงราย, แม่ฮ่องสอน, น่าน โดยใช้ส่วนผสมแบบ indirect fluorescent antibody test (IFA) ในตัวอย่างทั้งสิ้น 169 ตัวอย่าง ซึ่งเป็นตัวอย่างแมว 56 ตัวอย่างและสุนัข 113 ตัวอย่าง จากการศึกษาพบว่า ที่จังหวัดเชียงรายพบ 1:32 ตัวอย่างซีรัมแมวจำนวน 11/15 (73.3%) จังหวัดแม่ฮ่องสอนพบ 52 (19/10) ตัวอย่างซีรัมสุนัขจำนวน 52 (19/10) ที่จังหวัดน่านไม่พบผลบวก ความชุกของแอนติบอดีต่อการติดเชื้อ Bartonella hensalae ในแมวและสุนัขในพื้นที่ชายแดนไทย-พม่ามีอัตราการสัมผัสเชื้อสูงกว่าในแมวในเขตพื้นที่ชายแดนไทย-ลาวอย่างมีนัยสtatistics สำคัญ (56.1% ต่อบน 0.0%, p<0.001) แต่ไม่พบอัตราการติดเชื้อ Bartonella hensalae ในสุนัข

คุณสมบัติ: Bartonella hensalae แมว สุนัข พื้นที่ชายแดนไทยภาคเหนือ

1 สถาบันวิจัยวิทยาศาสตร์สาธารณสุข กรมวิทยาศาสตร์การแพทย์ กระทรวงสาธารณสุข จ. นนทบุรี 11000
2 Laboratory of Veterinary Public Health, College of Bioresource Sciences, Nihon University Fujisawa, Kanagawa 252-8510, Japan
3 International Emerging Infections Program (IEIP) Thailand MOPH-U.S. CDC Collaboration (TUC) กรมวิทยาศาสตร์การแพทย์ กระทรวงสาธารณสุข จ. นนทบุรี 11000
*ผู้รับผิดชอบบทความ E-mail: decha.p@dmsc.mail.go.th

Introduction

Genus Bartonella is small, gram-negative aerobic bacilli that is difficult to grow in culture. They are found in many different animals. Bartonella species are the cause of several different diseases associated with human disease including B. bacilliformis, B. quintana, B. vinsonii berkholzii, B. henselae, B. elizabethae, B. grahamii, B. wushouensis, B. koehlerae, B. rocha-limae and B. tamiae (Lamas et al., 2008).

Bartonella henselae is a proteobacterium that can cause bacteremia, endocarditis, bacillary angiomatosis and peliosis hepatitis in human (Anderson and Neuman, 1997). It is also the causative agent of cat scratch disease, occurring after a cat bite or scratch. The disease is characterized by lymphadenopathy and fever (Chomel et al., 2004; Inoue et al., 2009).

The study was conducted to understand the serological level of the infection of Bartonella henselae in cats and dogs in the areas along the Thailand-Myanmar-Laos PDR borders. The relationship of dogs, cats and prevalence of Bartonella spp. was also examined in the present study. The data will benefit public health workers and patients who have a history of contact with commensal vectors such as flea and tick. It will be useful for the practice of public health in controlling vector-borne disease. It can also benefit for the management of the regional offices of Disease Prevention and Control in the province along Thailand-Myanmar-Laos PDR borders.

Materials and Methods

Sera: A total of 56 pet cats and 113 pet dogs sera were collected from 3 provinces along the Thailand-Myanmar border (Maesai district: Chiangrai province, Muang district: Maehongson province) and Thailand-Laos PDR border (Chalermprakiat district: Nan province), from February to March in 2008. Before the collection of blood samples, gender, type and age of each cat and dog were recorded. The dogs and cats were restrained and 3 ml of fresh blood from the cephalic, saphenous or femoral veins was aseptically collected and placed in vials. Sera were separated and stored at -20°C until tested.
Serological test: Anti-\(B. henselae\) detection was performed in the Laboratory of Veterinary Public Health, College of Bioresource Sciences, Nihon University, Kanagawa, Japan. The antibody titers to \(B. henselae\) were determined by the indirect fluorescent antibody test (IFA), using \(B. henselae\) (ATCC 49882) as an antigen. The procedure followed a previous study by Maruyama et al. (2000). In brief, a volume of 10 μl of diluted serum (diluted in PBS containing 5% skim milk) was put onto test holes and slides were incubated at 37°C for 1 hour in a humid chamber. Then, the slides were washed twice with PBS for 15 min. Fluorescein-conjugated goat anti-cat immunoglobulin G (Cappel Products, Organon Teknika Corp, USA) was diluted 1:800 in PBS with 0.001% Evan’s blue and 10 μl of the mixture was applied onto test holes and slides were incubated at 37°C for 1 hour in a humid chamber. The slides were washed twice with PBS for 15 min, and then washed again with double distilled water for 10 min. The intensity of the bacillus-specific fluorescence was scored subjectively from +1 to +4, and the fluorescence score of ≥ +2 at a dilution of 1:32 was considered to be positive. Serum samples were screened at 1:32 and any positive sample at 1:32 dilution was titrated in a series of two fold dilutions up to 1:1,024.

Statistical analysis: Pearson Chi-square tests were used to examine statistical significance; \(p<0.001\) was considered significant.

Results and Discussion

The cat samples collected from the 3 provinces range from 15-22 samples/province (an average of 18.7) (Table 1). All samples were mixed type. The number of antibody titers against \(B. henselae\) in cats at the cut-off value 1:32, 1:64 and 1:128 were 5, 11, 5 samples, respectively (Table 2). The prevalence of antibodies to \(B. henselae\) varied by provinces, ranging from 0.0 to 73.0%. The average percentage of positive rate to \(B. henselae\) in Nan, Maehongson and Chiangrai provinces was 0.0, 52.0 and 73.0%, respectively with the cut-off value of 1:32 (Table 3). We found that the prevalence of antibodies to \(B. henselae\) in the 3 provinces had statistical differential (\(p<0.001\)). The prevalence of \(B. henselae\) in Chiangrai and Maehongson provinces was significantly higher than that of Nan province (\(p<0.001\)) but the prevalence of \(B. henselae\) in Chiangrai and Maehongson provinces had no statistical differences. In this study, the gender and age of the cat had no statistical differences associated with seroprevalence. Examining the prevalence of antibodies to \(B. henselae\) in the cats in the two different border parts of Thailand, we found that the prevalence of antibodies to \(B. henselae\) from Thailand-Myanmar border (Chiangrai and Maehongson provinces, 61.8%) was significantly higher than that of Thailand-Laos PDR border (Nan province, 0.0%) (\(p<0.001\)). The dog samples collected from the 3 provinces range from 15-60 samples/province (an average of 38) (Table 1). All dogs sample were mixed type. This study found that the dogs in the 3 provinces along Thai-Myanmar-Laos PDR had no prevalence of antibodies against \(B. henselae\).

<table>
<thead>
<tr>
<th>Table 1 The gender and age of cats and dogs samples along the northern borders of Thailand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Cat: Male/Female</td>
</tr>
<tr>
<td>Dog: Young/Adult</td>
</tr>
</tbody>
</table>

*Young: Cat/Dog age < 1 year **Adult: Cat/Dog age ≥ 1 year

The seroprevalence of \(B. henselae\) in cats was found in Thailand-Myanmar Border (Chiangrai and Maehongson provinces), but not found in Thailand-Laos PDR border (Nan province). The result correlated with report of isolate \(B. henselae\) from cats and cat fleas in Thailand-Myanmar Border (Parola et al., 2003). The seroprevalence in cats was higher in Chiangrai and Maehongson provinces, while no positive cats were found in Nan province. Chiangrai and Maehongson provinces are located in city site, but Nan province is located in rural and mountain areas. The seroprevalence of \(B. henselae\) in cats may depend upon the areas that the samples of sera were collected. The result also correlated with a report...
stating that warm and humid climates are strongly associated with the presence of antibodies against *B. henselae* and ectoparasite infestation in cats (Maruyama et al., 2001; Chomel et al., 2004). The antibody to *B. henselae* was found only in the cats and not found in the dogs captured from the 3 areas suggesting that cats are important reservoirs of *B. henselae* in these areas and host specificity may be responsible for the association of *B. henselae* with the feline reservoir (Breitschwerdt and Kordick, 2000). It is known that dogs serve as the reservoir of *B. vinsonii* subsp. berkhoffii. Recently, there was a report that dogs could be accidentally infected with *B. henselae* and *B. clarridgeiae* (Diniz et al., 2007; Inoue et al., 2009). Therefore, the other panels, *B. vinsonii* subsp. berkhoffii and *B. clarridgeiae*, should also be examined in the dog sera.

In this study, we didn’t collect other kinds of samples e.g. mite, chigger, tick, flea, rat and humans to examine for *B. henselae* by using isolation, purification, PCR, sequencing and phylogenetic classification techniques. Therefore, further studies should be conducted to clarify the epidemiology of the other reservoirs as the sources of Bartonell *spp.* infection along Thailand borders.

Acknowledgements

We would like to gratefully acknowledge the fund for this project from the Regional Research Institute of Agricultural Production (RRIAP), College of Bioresource Sciences, Nihon University (NUBS). We also appreciated the knowledge from Drs. Toshikatsu Hagiwara, Kai Inoue, Chi Shih-Hui, Shingo Sato, Maskiet Boonyarith and Naris Tengchaisri. We would also like to thank the zoonosis team of National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Thailand for kindly collecting the samples.

References

