The Depletion of Intracellular Glutamine by Methionine Sulfoximine on Amino Acid Uptake in Placental Cells (BeWo)

Boonrit Thongsong*

Abstract

The intracellular concentration of glutamine is very high where it plays a central role as a ready source of nitrogen, carbon and energy in various metabolic processes. The purpose of the present study was to investigate the influence of intracellular glutamine status on amino acid uptake activity in placental choriocarcinoma (BeWo) cells, analogous to normal placental trophoblasts. Intracellular glutamine was depleted by culturing the cells in regular medium without glutamine and by treating with 2 mM methionine sulfoximine (MSX), an inhibitor of glutamine synthetase, for 16 hours. The uptake of various amino acids was measured by the use of appropriate substrates and ionic conditions. When cultured in the absence of glutamine and MSX treatment, the uptake of serine, threonine and histidine was not influenced. Under similar conditions, the uptake of glutamate, alanine, glycine, α-(methylamino)isobutyric acid (MeAIB), taurine and carnitine was reduced to a varied extent. These data showed that intracellular glutamine was obligatory for maintenance of optimal activity of amino acid uptake in BeWo cells.

Keywords: amino acid uptake, glutamine, methionine sulfoximine, placenta

Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, THAILAND.

*Corresponding author: E-mail: Boonrit.T@chula.ac.th

บทคัดย่อ
การทําให้กลูทามีนภายในเซลล์ลดลงด้วยเมทไธโอนีนซัลโฟซิมีนต่อการนำเข้ากรดอะมิโนของเซลล์รก
บุญฤทธิ์ ทองทรง

โดยทั่วไปปริมาณของกลูทามีนภายในเซลล์มีระดับสูง บทบาทที่สำคัญประการหนึ่งของกลูทามีนภายในเซลล์คือ การเป็นแหล่งไนโตรเจน คาร์บอน และพลังงานในกระบวนการสันดาปต่างๆ ในส่วนนี้การนำเข้ากรดอะมิโนของเซลล์รกเป็นการนำเข้ากรดอะมิโนที่มีกลูทามีนและกรดอะมิโนอื่นๆ ที่มีกลูทามีนเป็นแหล่งของกรดอะมิโนที่สำคัญ เมธิโอนีนซัลโฟซิมีนเป็นยาที่มีประสิทธิภาพในการลดระดับกลูทามีนในเซลล์ วัตถุประสงค์การศึกษาครั้งนี้ เพื่อศึกษาผลของการลดระดับกลูทามีนในเซลล์รกโดยการใช้เมทไธโอนีนซัลโฟซิมีนเป็นยาที่มีประสิทธิภาพในการลดระดับกลูทามีน และผลของการลดระดับกลูทามีนภายในเซลล์รกต่อการนำเข้ากรดอะมิโนของเซลล์รก

คําสั่งสอน การนำเข้ากรดอะมิโน กลูทามีน แหลกไธโอนีนซัลโฟซิมีน ฯ
ภาควิชานิเวศวิทยา คณะเวชศาสตร์สัตว์ จุฬาลงกรณ์มหาวิทยาลัย ปทุมวัน กรุงเทพฯ
*ผู้รับผิดชอบบทความ E-mail: Boonrit.T@chula.ac.th

Introduction

Nutrients play a critical role in interaction of various intracellular and extracellular factors. Many studies have shown that amino acids have marked ability to control many cellular processes (Kadowaki and Kanazawa, 2003) that respond to the nutritional status of the cells. Glutamine, a nonessential amino acid, is by far the most abundant free amino acid in circulation and is an important molecule that not only serves as a building block for protein synthesis but also performs a variety of additional biological functions (Karinch et al., 2001; Oehler and Roth, 2003). The intracellular concentration of glutamine is very high where it plays a central role as a ready source of nitrogen, carbon and energy in various metabolic processes. Glutamine is taken up into mammalian cells from extracellular medium by several active and passive amino acid transport systems (Ganapathy et al., 2003). In addition, glutamine is also synthesized by the amidation of glutamate. This ATP-dependent reaction is catalyzed by glutamine synthetase, an enzyme inhibitable by the glutamine analog methionine sulfoximine (MSX). The purpose of the present study was to investigate the influence of intracellular glutamine depletion on the uptake activity of the amino acids. This study was carried out using the BeWo cells, a human placental choriocarcinoma cell line. These cells have proven to be effective in studying the placental transporters (Bode et al., 2006). They express abundant and several amino acid transport systems that are subject to extensive regulation in human placenta under various physiological and pathological conditions (Mahendran et al., 1993; Glazier et al., 1997; Sibley et al., 1997; Godfrey et al., 1998; Harrington et al., 1999; Oehler and Roth, 2003). The different amino acid transporters can work together as an integrated system in the syncytiotrophoblast (Sengers et al., 2010). The uptake activity of some amino acids in the placental brush border membrane has been shown to directly correlate with the birth weight of babies under various physiological and pathological conditions (Mahendran et al., 1993; Glazier et al., 1997; Sibley et al., 1997; Godfrey et al., 1998; Harrington et al., 1999). Therefore, information on the identity of this factor that regulates the amino acid uptake measurements in these cells may be relevant to the understanding of fetal growth and development.

Materials and Methods

Cell culture and chemicals: The BeWo choriocarcinoma cell line, cell culture media, methionine sulfoximine (MSX), fetal bovine serum, unlabeled amino acids and radiolabeled amino acids such as L-[3H]glutamine, L-[3H]glutamic acid, L-[3H]serine, L-[3H]threonine, L-[3H]histidine,
[\textit{[3]H}taurine, \textit{[3]H}Alanine, \textit{[3]H}glycine, \textit{[3]H}carnitine and \textit{[3]H}α-(methylamino) isobutyric acid (MeAIB) were provided by Professor Dr. Vadivel Ganapathy and Professor Dr. Puttur Prasad.

Cell culture and treatment: The BeWo cells were cultured in 12-well culture plates in 150 cm2 flasks in DMEM/F-12 (50:50) medium containing 2.5 mM glutamine and supplemented with 10% fetal bovine serum, 100 U/ml penicillin and 100 µg/ml streptomycin. The culture condition was in a 37°C serum, 100 U/ml penicillin and 100 µg/ml glutamine and supplemented with 10% fetal bovine DMEM/F-12 (50:50) medium containing 2.5 mM amino acids was then measured for 5 minutes. The absence of glutamine (2.5 mM). Uptake of various amino acids was then measured for 5 minutes. The transport of various amino acids was then measured for 5 minutes. After the termination of the uptake, the cells were washed two times with 1.5 ml of ice-cold uptake buffer. The cells were then solubilized with 0.5 ml of 1% SDS/0.2 N NaOH and transferred to scintillation vials for the determination of the radioactivity associated with the cells. Experiments were made in triplicate. The results are given as means ± SEM.

Amino acid uptake measurements: Uptake measurements were carried out at 37°C. The medium was aspirated and the cell monolayer was washed once with the uptake buffer. Uptake was then initiated by the addition of 500 µl of uptake buffer containing 0.5 µCi of radiolabeled amino acids. The incubation was continued and then measured time course for 1, 3, 5, 10, 20 and 40 min, following which the uptake was terminated by aspirating the uptake medium. All subsequent measurements were done within this linear phase of uptake. The transport of various amino acids was measured for 5 minutes. After the termination of the uptake, the cells were washed two times with 1.5 ml of ice-cold uptake buffer. The cells were then solubilized with 0.5 ml of 1% SDS/0.2 N NaOH and transferred to scintillation vials for the determination of the radioactivity associated with the cells. Experiments were made in triplicate. The results are given as means ± SEM.

Results and Discussion

Influence of intracellular glutamine depletion on amino acid uptake in BeWo cells: As for in vitro model, the effect of extracellular and intracellular glutamine levels on the uptake of amino acids in BeWo cells was investigated. Initially, determination of the uptake activity was measured in cells grown in medium with and without glutamine in the absence and presence of MSX. The rationale for these experiments was as follows; MSX is an inhibitor of glutamine synthetase and therefore treatment of cells would prevent endogenous generation of glutamine inside the cells. When cells are grown in the absence of glutamine in the culture medium but in the presence of MSX, this might lead to depletion of glutamine inside the cells. Such depletion may not occur when cells are grown in the presence of glutamine. Confluent cells were treated with or without MSX (2 mM) for 16 hours in the presence or absence of glutamine (2.5 mM). Uptake of various amino acids was then measured for 5 minutes. The results in figure 1 show that while the uptake of glutamate, alanine, glycine, MeAIB, taurine and carnitine is reduced to varying extent in MSX-treated cells, the uptake of serine, threonine and histidine is not affected under similar conditions. Surprisingly, the uptake of glutamine is slightly (16%) higher in MSX-treated cells compared to the glutamine uptake in control cells (567±24 pmol/mg protein/5 min vs 485±24 pmol/mg protein/5 min). These results indicate that the effect of intracellular depletion of glutamine on amino acid uptake activity can affect the variety of amino acid properties. In addition, the present studies show that intracellular glutamine status may influence not only the uptake activity of one amino acid but also that of another uptake nutrient such as the carnitine. Uptake of various nutrients that are different properties from glutamine such as taurine and carnitine are also decreased significantly in MSX-treated cells.

This report describes the effect of intracellular glutamine depletion on the uptake of amino acids in BeWo cells. The effect of glutamine depletion on amino acid transport is not limited to specific amino acid. Thus, extracellular and intracellular glutamates appear to have a differential effect on the regulation of some amino acid activities. These findings may have important physiological implications. They should be investigated consequently the alternate possibility whether MSX treatment may interfere with the expression of some amino acid transporter genes at the level of transcription and with protein expression.
at the level of translation. Further investigation is needed to be done with the specific amino acid transport system, system A, since it is one of the transporters that mediate glutamine entry into normal placental syncytiotrophoblast at the brush border membrane (Novak and Beveridge, 1997). Thus, intracellular glutamine status may be a significant player as a regulator of transcellular transfer of amino acids from mother to fetus across the placenta. This amino acid will be considered to be conditionally essential.

Acknowledgements

The author would like to thank Professor Dr. Vadivel Ganapathy and Professor Dr. Puttur D Prasad from Georgia’s Health Science University, USA, for their kind support and significant advice.

References

