Detection of Enzootic Bovine Leukosis in Cattle using Nested Polymerase Chain Reaction Assay

Jomelson Alfaro Uera1* Jonathan Ventura Lazaro1 Claro Niegos Mingala2*

Abstract

Enzootic bovine leukemia (EBL) is caused by bovine leukemia virus (BLV) infection. BLV was detected in cattle using nested polymerase chain reaction (PCR) assay and were identified BLV infected cattle farms in five selected provinces in the Philippines. A total of 300 cattle blood samples were used. BLV Proviral DNA was extracted and amplified using nested PCR assay targeting the BLV long terminal repeat (LTR). Results showed that 11 samples (3.67%) of the 300 cattle blood samples used were positive for BLV infection. This study is considered first report of cattle EBL in the Philippines.

Keywords: BLV, cattle, EBL, nested PCR, Philippines

1College of Veterinary Science and Medicine, Central Luzon State University, Science City of Muñoz 3120, Nueva Ecija, Philippines
2Animal Health Unit, Philippine Carabao Center, Science City of Muñoz 3120, Nueva Ecija, Philippines
*Corresponding author: E-mail: cmingala@hotmail.com

Detection of Enzootic Bovine Leukosis in Cattle using Nested Polymerase Chain Reaction Assay

Jomelson Alfaro Uera1* Jonathan Ventura Lazaro1 Claro Niegos Mingala2*

Enzootic bovine leukosis (EBL) is caused by bovine leukemia virus (BLV), which is a retrovirus of the Family Retroviridae (Khan, 2010). B-lymphocytes of cattle and water buffaloes are affected causing the development of lymphomas in the peripheral lymph nodes and other organs (Ambroski et al., 1989; Murtaugh et al., 1991; Pollari et al., 1992). Approximately 30% of infected cattle develop persistent lymphocytosis while usually less than 5% develop lymphoma (Pollari et al., 1992). BLV is related genetically and functionally to human T-lymphotropic viruses 1 and 2. Its major target cells are the B lymphocytes. The virus particle is spherical and about 80-100 nm in diameter. It consists principally of single-stranded RNA, some surface glycoproteins and several enzymes, including reverse transcriptase (Venables and Lucas, 2004). During retroviral replication, the single-stranded viral genomic RNA is transcribed to double-stranded DNA molecules called provirus or proviral DNA (Klintevall et al., 1994). Proviral DNA integrates into the nuclear DNA of the host cell and establishes infection that persists for the life of the animal.

The provirus is flanked by two identical long terminal repeat sequences (LTRs) and contains the open reading frames corresponding to gag, pr, pol and env. Several orfs coding for Tax, Rex, R3 and G4 are present in the X region between env and the 3'LTR (Sagata et al., 1984-89). The genomic RNA transcript initiates and terminates in the 5' and 3' LTRs, respectively (Gillet et al., 2007). LTR is the control center for gene expression and is also involved in retro-transcription and integration. The LTR structure has three parts (U3, R, U5) in both extremes of the proviral DNA (Fig 1). The 3' LTR acts in transcription termination and polyadenylation, although it has exactly the same sequence arrangement as the 5' LTR, the latter has dominant control as promoter. If the 5' LTR is disrupted, the 3' LTR can act as a promoter (Arellano et al., 2006).

BLV infection causes significant animal health problems like reduced milk production and poor reproductive efficiency and can also be a major cause of economic loss worldwide due to high morbidity and condemnation at slaughter (Venables and Lucas, 2004; Yavru et al., 2007). It is listed in the World Organization for Animal Health as a disease of importance to international trade (Kobayashi et al., 2010; OIE, 2000). EBL is widely distributed in the world, but with distinct regional differences in prevalence (Venables and Lucas, 2004).

In the Philippines, BLV infection is classified as an exotic disease based on the classification of the OIE listings of diseases which mean that the disease is not present in the country (BAI, 2004). Mingala et al. (2009) pioneered the surveillance study of BLV infection in the country with 27.6% prevalence of the disease in water buffaloes. As of today, no study of BLV infection has been reported in cattle in the Philippines. According to the DA-BAI Administrative Order No. 12 series of 2004, it is an exotic disease in the country. However, it is said to be already present and suspected in the country (Mingala et al., 2009).
Several studies had been made in many countries that detected the disease at molecular level through DNA based technique, but in the Philippines, there is only one study on the detection of the disease through PCR because of the late introduction of PCR technology in the country.

The study will be of great help in detecting EBL in cattle in the Philippines. Currently, the Philippine production for livestock especially in cattle and water buffalo is increasing. Therefore, spread of BLV infection can be prevented and controlled by means of diagnosing through detection by nested PCR. The objective of the study was to detect BLV infection in cattle using nested polymerase chain reaction assay.

Materials and Methods

Cattle blood sample collection: A total of 300 cattle blood samples which were previously collected from selected farms in five provinces in the Philippines were used. One hundred fifty three blood samples from Lagona, 42 from Pangasinan, 12 from La Union, 21 from Bohol and 72 from Cebu were collected. Blood samples were from native and crosses of native, Brahman, Holstein, Jersey and Sahiwal breeds. Five ml of blood were collected from each animal via the jugular vein. Blood samples were placed in sterile vacutainer tube with anti-coagulant, labelled accordingly and stored at 4°C until arrival at the laboratory.

Genomic DNA extraction and nested-PCR: Blood samples were centrifuged at 10,000 rpm for ten minutes. Three hundred microliter buffy coat was collected and transferred to a microcentrifuge tube for DNA extraction. Each tube was labelled according to the sample number. Genomic DNA extraction was done using the Wizard Genomic DNA Purification Kit (Promega, USA) following the manufacturer’s instruction.

All samples were tested by conventional PCR for the presence of β-actin gene (housekeeping gene) to assure that genomic DNA was extracted from all the samples. PCR was carried out in a total reaction volume of 20 μl containing 13.3 μl DDW, 2.0 μl 10x PCR buffer (Takara, Japan), 1.6 μl dNTPs (Takara, Japan), 0.5 μl each of ten pmol forward (F – CGC ACC ACC GGC ATC GTG AT) and reverse (R – TCC AGG GCC ACC TAG CAG AG) primers (Tajima et al., 1998), 0.1 μl of rTaq polymerase (Takara, Japan) and 2.0 μl of DNA template. PCR condition was the same as the first PCR except for the annealing temperature at 60°C. The amplified PCR products were visualized on 2% agarose gel. The results were observed under an ultraviolet light.

Results

A total of 300 cattle blood samples from selected cattle farms in five provinces in the Philippines were used. All 300 (100%) of the total cattle blood samples were confirmed to contain DNA as they exhibited bands at the expected 227 bp for the β-actin genes after PCR (Fig 2). This also ensures that DNA from all the samples had been successfully extracted.

On the other hand, the PCR products of the first BLV-LTR PCR amplification did not exhibit a desired 533 bp using the external primers. One reason is that the product of the first amplification for the nested PCR assay contained only very few number of target genes specific for the external primers. The second PCR amplification for BLV-LTR internal
and New Zealand. These two countries are known to have BLV infection (Hillink, 1988; Ambroski et al., 1989; Eaves et al., 1994; Teekayuwat et al., 2000; Lew et al., 2004; AQIS, 2009; Erectus, 2011). Cattle blood samples from Pangasian, La Union, Bohol and Cebu were all negative for BLV infection.

Amplification and detection of BLV proviral DNA genes by the double or nested PCR provides a sensitive means of direct diagnosis of BLV infection. Most studies of PCR assays are based on single PCR using only one pair of primers. However, studies on BLV and other viruses proved that sensitivity of nested PCR, using two pairs of primers, was considerably higher than that of the single PCR (Kintevall et al., 1994).

Mingala et al. (2009) detected BLV proviral DNA in riverine and swamp type water buffaloes in the Philippines using the BLV-LTR primers designed by Tajima et al. (1998). Their study resulted to 75 positive results out of 272 (27.6%) blood samples collected from various parts of the Philippines, mainly in Luzon. In Canada, Jacobs et al. (1992) detected BLV provirus in cattle having lymphoma using nested PCR. The result of the nested PCR was 16 out of 27 (59.3%) cattle with lymphoma were positive for BLV provirus. They also concluded that nested PCR is very specific for detecting BLV provirus. In the US, Kuckleburg et al. (2003) also detected BLV provirus using nested PCR and showed that a very significant number of samples were positive to BLV infection in blood and milk samples collected. The study accomplished that nested PCR might not be designed to replace the traditional antibody assays. However, it can provide as a useful supplement for the early detection and confirmation of EBL since delayed seroconversion is also possible in the event of early BLV infection (Wu et al., 1989). To the best of our knowledge, this is the first report of EBL detection in cattle in the Philippines using nested-PCR.

Discussion

One of the methods in confirming the success of DNA extraction is the exhibition of housekeeping gene (i.e. actin gene) by PCR. β-actin gene exists and is transcribed in most cell types as components of cytoskeleton and as mediators of internal cell motility (Lanetty et al., 2008; Zilli et al., 1988). β-actin is typically selected as a housekeeping gene because of its responsibility for the key biological pathways, ubiquitous expression and its presence in all genomic DNA (Pearce et al., 2007). Over the past years, β-actin has become the most common internal control gene in gene expression and other related molecular studies. It is not only an adequate housekeeping gene but also the best performing and most stable gene because it determines the overall quality of the DNA (Lanetty et al., 2008; Ferreira et al., 2010).

The nested-PCR is usually used to reduce the presence of undesirable bands due to contaminations and to increase the specificity of amplifying the target gene. Usually, the first PCR product would not exhibit bands after electrophoresis particularly in cases of low DNA yield of the target gene. The gene load is very low that it only produced invisible bands. The presence of the expected second PCR amplicon is usually viewed as confirmation of the presence of the target gene in a sample (EPA, 2004). According to Rimstad and Hyllseth (1990) the second amplification will surely form a band because it is already specific to a sequence found within the DNA of the initial amplification during nested PCR.

In connection to the detected BLV infection despite no case in the past, the possible reason particular in the farm where the samples came from is that stocks were previously imported from Australia and New Zealand. These two countries are known to have BLV infection (Hillink, 1988; Ambroski et al., 1989; Eaves et al., 1994; Teekayuwat et al., 2000; Lew et al., 2004; AQIS, 2009; Erectus, 2011). Cattle blood primers resulted to 11 (3.67%) positive samples of the total 300 cattle blood samples. Interestingly, out of 153 cattle blood samples from the two farms in Laguna, all 11 (7.19%) positive samples came from only one farm (Fig 3).

![Figure 3](image)

**Figure 3** Nested PCR results for BLV-LTR 2nd amplification (samples no. 61-92). M, represents the 100 bp ladder. White arrows show positive results (198 bp). (+) positive and (−) negative controls.

Acknowledgements

We thank Dr. Libertado C. Cruz, Executive Director of the Philippine Carabao Center, for his valuable support. We also thank Drs. Nancy S. Abes, Charito A. Gutierrez and Marvin A. Villanueva for their technical assistance.

References


