Susceptibility of *Clostridium difficile* Isolated from Healthy Captive Asian Elephants to Metronidazole and Vancomycin

Nattawooti Sthitmatee¹* Thanya Warinrak¹ Waroot Wongkalasin²

Abstract

Susceptibility to metronidazole and vancomycin, drugs of choice for *Clostridium difficile* infection, of 15 *C. difficile* isolates from 6 healthy Asian elephants was determined. All of the isolates belonged to only 1 ribotype pattern and carried both toxin A and B genes. The Minimal inhibitory concentration range of metronidazole and vancomycin, drugs of choice for treatment of *C. difficile* infection, was 0.125-4.0 µg/ml and 0.125-2.0 µg/ml, respectively. Moreover, MIC₅₀ and MIC₉₀ for metronidazole were 0.75 and 1.5 µg/ml while vancomycin was 1.0 and 2.0 µg/ml. There was no evidence of resistance to these antimicrobials. These results might be a preliminary data for further study of animal *C. difficile*.

Keywords: captive Asian elephant, *Clostridium difficile*, metronidazole, MIC, vancomycin

¹Department of Veterinary Bioscience and Veterinary Public Health,
²Department of Companion Animal and Wildlife Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai 50100
*Correspondence author E-mail: femnats@thit@gmail.com
Introduction

Clostridium difficile is a gram-positive anaerobic bacterium with sporulated bacilli which is recognized as a causative agent of a severe colon disease called pseudomembranous colitis in human. In addition, C. difficile is known to be the first cause of nosocomial diarrhea (Kelly and Lamont, 1998) or diarrhea associated with antimicrobial usage. Predominant virulent factors of this bacterium are two producing toxins A and B. Both are potent toxins induced by Sulforaphane-like substance in broccoli and cause extensive colonic inflammation and epithelial tissue damage in the infected host (Carter et al., 2012). Diagnosis of C. difficile is generally performed by fecal culture with selective media in anaerobic condition and detection of its toxins (Delmée, 2001; Delmée et al., 2005). Bojesen et al. (2006) showed the first case report of elephant C. difficile infection in Denmark. Post-mortem necropsy and laboratory diagnosis confirmed overgrowing of C. difficile in gastrointestinal (GI) tract of elephant induced by Sulforaphane-like substance in broccoli even though the bacterium was recognized as a normal flora (Songer, 1996; Sthitmatee and Boonmar, 2011). Our previous study isolated 15 strains of C. difficile from 6 healthy elephants and concluded that C. difficile was a normal microbe in GI tract of healthy elephants (Sthitmatee and Boonmar, 2011). Moreover, the previous study in Austrian suggested that animal reservoirs were possible sources, via direct contact with food or meat products, of C. difficile infection in human (Indra et al., 2009). In Thailand, captive elephants are for shows and forest sightseeing. Thus, there are many possibilities for human especially mahouts and tourists to direct expose to C. difficile. However, there is still scarce therapeutic information on animal C. difficile isolates, only in pigs (Post and Songer, 2004). Therefore, the objectives of the present study were (1) to obtain the therapeutic information on disease caused by C. difficile strains isolated from elephant source, determining the antimicrobial susceptibility of these 15 isolates to metronidazole (MTZ) and vancomycin (VAN), which are the drugs of choice for the treatment of C. difficile infection in human (Johnson, 2009; Leffler and Lamont, 2009) and (2) to characterize the isolates by detection of toxin genes and ribotyping. The advantage of this study is preliminary information for further investigation of this bacterium in animals.

Materials and Methods

Bacterial culture: Bacteria were anaerobically cultured at 37°C for 48 hours on cycloserine cefoxitin fructose agar (CCFA) supplemented with egg yolk (Oxoid, Basingstoke, UK), 500 μg/ml cycloserine (Oxoid) and 6 μg/ml cefoxitin (Oxoid) as described previously (Post and Songer, 2004). The anaerobic condition was composed of 5% Hydrogen, 5% Carbon dioxide and 90% Nitrogen, and was conducted by Bactron X-2 Anaerobic Chamber (Engineered Production System, Orange Country, CA). Positive colonies which appeared grayish, opaque and had typical horse manure odor were selected. Then, a
single colony was picked and incubated in tryptic soy broth (TSB: Merck, Darmstadt, Germany) for DNA preparation.

DNA preparation and molecular characterization of the strains: Bacterial suspension was subjected to prepare chromosomal DNA with High Pure PCR template preparation Kit (Roche, Mannheim, Germany). Toxin gene typing was performed by multiplex PCR for identification of genes tpi, tcdA and tcdB as described previously (Lemee et al., 2004). The PCR ribotyping was employed by the protocol reported previously (Keel et al., 2007).

MIC: MIC was adapted and modified based on agar dilution method as described by a revised standard method of the Japanese Society of Antimicrobials for Animals in 2003. Briefly, metronidazole (MTZ: Sigma-Aldrich, St. Louis, MO, USA) and vancomycin (VAN: Sigma-Aldrich) were prepared with 2-fold dilution before adding into culture agar and pouring into sterile culture plates as described previously (Zheng et al., 2007). Agar medium used was 5% horse blood Brucella agar (Oxoid) supplemented with hemin (Acros Organics, Geel, Belgium) and vitamin K (Acros Organics). Subsequently, single colony was grown in TSB at 37°C in anaerobic chamber until bacterial suspension reached McFarland Standard No. 1.5. Then, the plates were inoculated in anaerobic condition at 37°C for 48 hours. The lowest concentration of an antimicrobial, which completely inhibited bacterial growth, was considered to be the endpoint and the concentration was regarded as the MIC. The resistance breakpoint values of VAN was ≥4 µg/ml and MTZ was >16 µg/ml, respectively (Zheng et al., 2007). Moreover, *Bacteroides fragilis* (ATCC 25285) and *B. thetaiotaomicron* (ATCC 29741) were included as controls.

Results and Discussion

Six elephants were raised at 2 different camps. There were four elephants in camp A, one male (21 years old) and three females (17, 22 and 25 years old) and, one male (18 years old) and one female (27 years old) in camp B. All captive elephants were fed on bananas, wild sugarcanes (*Saccharum spontaneum*) and additional commercial concentrate feeds during daytime. There were also abundance of water and plants such as grass, bamboo leaves, and wild sugarcanes in the area where the elephants were held. Moreover, elephant health management was under supervision of veterinarians. According to elephants’ individual health records, there was no evidence of antimicrobial usage six month prior to the experiment.

All the isolates carried both toxin A and B genes and the ribotyping analyses indicated that there was only 1 pattern among 15 isolates. MIC range of MTZ was 0.125-4.0 µg/ml while VAN was 0.125-2.0 µg/ml. Moreover, MIC₉₀ and MIC₉₀ for MTZ were 0.75 and 1.5 µg/ml while MIC₉₀ and MIC₉₀ for VAN were 1.0 and 2.0 µg/ml, respectively. In addition, there was no evidence of resistance to these antimicrobials.

Clostridium spp. is recognized as enteric pathogens in human, domestic animals and also wildlife (Songer, 1996; Magdesian et al., 2002). _C. difficile_ caused pseudomembranous colitis in human, hemorrhagic necrotizing enterocolitis in foals (Magdesian et al., 2002), fatal enterocolitis in Asian elephants (Bojesen et al., 2006), and neonatal enteritis in piglet (Post and Songer, 2004; Avbersek et al., 2009). However, _C. difficile_ could be isolated from the environment including healthy animal species (Medina-Torres et al., 2011) by control of the normal flora in GI tract. Disturbances to the normal flora in GI tract affect microbial growth and eventually cause disease in animals; for example, the over feeding broccoli in Danish elephants leading to overgrowth of _C. difficile_ and resulting in fatal enterocolitis (Bojesen et al., 2006). _C. difficile_ produces two types of exotoxins; A (TcdA: enterotoxin) and B (TcdB: cytotoxin) (Carter et al., 2012). These two toxins react to cell cytoskeleton by damaging cell tight junction and cause epithelium cell erosion. _C. difficile_ infection in animals caused moderate to severe mesocolonic edema and pasty-to-watery yellowish colonic contents in 1-7 day-old piglets (Songer, 2004) and diarrhea calves (Hammitt et al., 2008). There is still no evidence of human infected with _C. difficile_ genetically related to elephant _C. difficile_, however, mahouts and tourists have a higher risk of exposure to this bacterium. Moreover, the results of Indra et al. (2009) suggested that animal reservoirs are possible sources, via food, of human _C. difficile_ infection. Therefore, molecular epidemiology among human strains and elephant strains need to be investigated.

MTZ and VAN are the drugs of choice for disease caused by _C. difficile_ in human (Post and Songer, 2004). Ranges of MIC for MTZ and VAN have been reported (Wong et al., 1999; Aspevall et al., 2006). MIC of _C. difficile_ strains to MTZ and VAN from Swedish University Hospital were 0.032-1.0 and 0.5-2.0 µg/ml (Aspevall et al., 2006) while in Hong Kong they ranged from 0.094-1.5 and 0.125-2.0 µg/ml, respectively (Wong et al., 1999). As our results, MIC range from elephant isolates were close to all human isolates. Moreover, MIC₉₀ of MTZ and VAN in elephant isolates was similar to MIC₉₀ from human isolates (Huang et al., 2009). However, resistance to antimicrobials in _C. difficile_ varied between countries (Huang et al., 2009). Most isolates are still susceptible to VAN and MTZ, but decrease in sensitivity is emerging. Huang et al. (2009) suggested that resistant mechanisms of _C. difficile_ are similar to the Gram-positive bacterium but trends and mechanisms were still required for further study.

Acknowledgements

This study was supported by Thailand Research Fund and Commission of Higher Education, Ministry of Education, (grant No. MRG5280026).
References

Songer JG 2004. The emergence of Clostridium difficile as a pathogen of food animals. Anim Health Res Rev. 5: 321-326.

